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“Philosophy cannot become scientifically healthy without an immense technical vocabulary. We can hardly imagine 
our great-grandsons turning over the leaves of this dictionary without amusement over the paucity of words with which 
their grandsires attempted to handle metaphysics and logic. Long before that day, it will have become indispensably 
requisite, too, that each of these terms should be confined to a single meaning which, however broad, must be free from 
all vagueness. This will involve a revolution in terminology; for in its present condition a philosophical thought of any 
precision can seldom be expressed without lengthy explanations.” – Charles Sanders Peirce, Collected Papers 8:169 
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Overview 
The Foundation Ontology consists of an adequate 
amount of set theory which, on the one hand, is suffi-
ciently flexible for the categorical inquiry involved in 
the Information Flow Framework (IFF) but, on the 
other hand, is sufficiently restrictive that IFF be con-
sistent (does not produce contradictions). The ap-
proach to foundations used here is an adaptation of 
that outlined in chapter 2 of the book Abstract and 
Concrete Categories (1990) by Jiří Adámek, Horst 
Herrlich and George E. Strecker. The basic concepts 
needed are those of sets and classes. To this we add 
the notion of Cartesian closure and topos structure at 
the level of classes. The Foundation Ontology is made 
up of several namespaces: the Namespace of Large Sets, the Namespace of Large Relations and the Name-
space of Orders, the Namespace of Large Classifications, the Namespace of Large Concept Lattices, etc. 
There is a foundation restriction at the lower metalevel – the Set Namespace (for small sets and their func-
tions), the Relation Namespace and the Classification & Concept Lattice Namespaces are each restrictions 
of their large counterparts. 

The Foundation Ontology uses and imports the following terms 
from the Basic KIF Ontology.  

The KIF relational terms ‘KIF$class’ (otherwise known as unary 
relations or predicates) and ‘KIF$relation’ and ‘KIF$subclass’, 
the KIF functional term ‘KIF$function’, and the generic type 

declaration term ‘KIF$signature’. The term ‘KIF$class’ is used in both a syntactic and a semantic sense – 
syntactically things that are of this type should function as KIF predicates, whereas semantically this de-
notes the largest kind of collection. Hence, semantically ‘KIF$class’ corresponds in general to collection 
and in particular here to conglomerate.  

The IFF Foundation Ontology uses the three-level set-theoretic hierarchy of sets – classes – conglom-
erates. In the following table we located various collections and functions1 in this 3-tiered framework. The 
placement of morphisms uses the axiom of replacement: there is no surjection from a set to a proper class. 

Table 1: Kinds of Specific Collections 

Conglomerates ○ the collections of classes, functions, opspans and binary cones 
○ the collections of large graphs and large graph morphisms  
○ the collections of large categories and functors between large categories 
○ the collection of natural transformations, and the collection of adjunctions 

Classes ○ the object and morphism collections in any large category 
Sets ○ sets as collections and the extent of (set) functions – the objects and morphisms in 

the Set category 
○ the instance and type sets of the classifications and the instance and type functions 

of the infomorphisms in the Classification category 
○ any (small) relation regarded as a collection – objects in the Relation category 

                                                           
1 Functions between conglomerates are unary or binary KIF functions. To make this the root ontology vis-à-vis importation, we have 
renamed these as conglomerate (CNG) functions. As CNG functions, source and target type constraints are specified with the 
‘CNG$signature’ relation. In contrast, functions between classes, otherwise called “SET functions,” have a more abstract, seman-
tic representation, since they have explicitly specified source and target classes and an abstract composition operation with identities. 
Every SET function is represented as a unary CNG function. The signature of a SET function is given by its source and target. 

KIF ‘class’, ‘relation’, ‘subclass’, ‘function’ 
‘signature’ 
‘[-]’, ‘1’, ‘2’ 

Figure 1: Collection Hierarchies 
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Previous Foundations 
Topos Axioms 
The Foundation Ontology axiomatizes the quasi-category of classes and their functions. When the axioms 
for a topos are in place in the Category Theory Ontology, then the Foundation Ontology will be proven to 
be a well-pointed quasi-topos with natural numbers and choice (for its small restriction, just remove the 
‘quasi-’ prefix). Perhaps the Foundation Ontology would partially satisfy Feferman’s representational 
needs, as expressed in the FOM list thread Toposy-turvey. For purposes of comparison, and to show com-
pleteness, here is a presentation of Colin McLarty’s topos axioms that give a first order expression for the 
theory of a well-pointed topos with natural numbers and choice. McLarty makes the following claims. 
o The theory was given by Lawvere and Tierney over 25 years ago. 
o It is are equivalent to Zermelo set theory with bounded comprehension and the axiom of choice. 
o It is adequate to classical analysis. 
The axioms use a two sorted language – a sort for objects and a sort for arrows. The axioms are partitioned 
into subsections: category axioms, finite completeness axioms, and topos axioms. The lists of primitives 
include informal explications. The actual axioms are numbered. Connections with the Foundation Ontology 
are indicated. 

Category Axioms 

To express the axioms for a category, we use the following terminology (primitive).  

o For any object A the identity morphism on A is denoted here by ‘Id(A)’. In the Foundation Ontology a 
class (an object in the quasi-category of classes and functions) is declared by the ‘(SET$class ?a)’ 
expression [axiom SET$1], and the identity is represented by the ‘(SET.FTN$identity ?a)’ expression 
[axiom SET.FTN$12]. 

o Any morphism f with source (domain) object A and target (codomain) object B is denoted by ‘f:A→B’. 
In the Foundation Ontology a function (a morphism in the quasi-category of classes and functions) is 
declared by the ‘(SET.FTN$function ?f)’ expression [axiom SET.FTN$1], and the source and target 
functions are represented by the ‘(SET.FTN$source ?f)’ and  ‘(SET.FTN$target ?f)’ expressions 
[axioms SET.FTN$2 and SET.FTN$3]. 

o The composition of two composable morphisms  ‘f:A→B’ and  ‘g:B→C’ is denoted by ‘f·g’ in dia-
grammatic order. In the Foundation Ontology the composition of two composable functions is repre-
sented by the ‘(SET.FTN$composition ?f ?g)’ expression [axiom SET.FTN$11]. 

The axioms for a category are as follows. 

1. Two morphisms are composable when the target of the first is identical to the source of the second 
‘f:A→B’ and  ‘g:B→C’. A composable pair of morphisms is expressed by the following axiom. 

∀ (f,g) [ ∃ (A,B,C) (f:A→B & g:B→C) ⇔ ∃ (h)(f·g = h) ]. 

In the Foundation Ontology this equivalence for the case of composable functions is expressed in the 
axiom group SET.FTN$11. 

2. The following axiom expresses the law of associativity of morphism composition. 

∀ (f,g,h,k,i,j) [ (f·g = k & k·h = j & g·h = i) ⇒  f·i = j ]. 

In the Foundation Ontology associative law of function composition is expressed by the theorem below 
SET.FTN$11. 

3. The following pair of axioms express the two identity laws for categorical composition. 

∀ (f,A,B) [ f:A→B ⇒  (Id(A)·f = f & f·Id(B) = f) ]. 

In the Foundation Ontology the identity laws for functions are expressed in the theorem below 
SET.FTN$12. 

http://www.math.psu.edu/simpson/fom/postings/9801/msg00164.html
http://www.math.psu.edu/simpson/fom/postings/9802/msg00072.html


IFF Foundation Ontology 

Robert E. Kent Page 4 6/20/2001 

Finite Completeness Axioms 

The terminology and axioms in this section extend those of the previous section to give a category with 
terminal object and finite products. For full finite completeness this relies upon the further topos axioms, 
which together with these axioms imply finite completeness and cocompleteness. McLarty’s goal was to 
present a minimal set of axioms for a topos. This differs from the goals for the Foundation Ontology and 
IFF in general, which aim for completeness and high expressiveness. In particular, it is very important for 
other IFF metalevel ontologies to have access to a completely expressive terminology for pullbacks, since 
these are very heavily used.  

o The terminal object is denoted by ‘1’. In the Foundation Ontology any singleton class is terminal. To 
be specific, the Foundation Ontology uses the unit class 1 = {0}  as the terminal class. In the Founda-
tion Ontology the terminal class (in the quasi-category of classes and functions) is declared by the 
‘SET.LIM$terminal’ and the ‘SET.LIM$unit’ expressions [axiom SET.LIM$1]. 

o The binary Cartesian product for both objects and morphisms is denoted by ‘_×_’; in particular, for any 
two objects A1 and A2 the binary Cartesian product is denoted by ‘A1×A2’. In the Foundation Ontology 
the binary product CNG function for classes is represented by the term ‘SET.LIM.PRD$binary-
product’  [axiom SET.LIM.PRD$6], and the binary product CNG function for SET functions is repre-
sented by the term ‘SET.LIM.PRD.FTN$binary-product’ [axiom SET.LIM.PRD.FTN$11]. 

o The two binary product projection morphisms are denoted by ‘p1(_,_)’ and ‘p2(_,_)’.  In the 
Foundation Ontology the two CNG binary product projection functions are represented by the terms 
‘SET.LIM.PRD$binary-product’ 

The axioms for a category with terminal object and finite products are as follows. 

4. An object 1 is terminal in a category when for any other object A there is a unique morphism 
1A : A → 1 from the object to the terminal object. The existence of a terminal object is stated by the fol-
lowing axiom. 

∀ (A) [ ∃ !(f)(f:A→1) ]. 

In the Foundation Ontology this universal property is expressed by the definition of the unique func-
tion ‘SET.LIM$unique’ in axiom SET.LIM$2. 

5. The  source and target typing for the two binary product projection functions is declared by the follow-
ing axioms. 

∀ (A,B) [ p1(A,B):A×B→A & p2(A,B):A×B→B ]. 

In the Foundation Ontology declarations are is expressed by the binary Cartesian product projection 
axioms SET.LIM.PRD$12 and SET.LIM.PRD$13. 

6. The universality for the binary product is asserted by the following axiom. 

∀ (f,g,A,B,C) [ (f:C→A & g:C→B) ⇒   
        ∃ !(u)(u:C→A×B & u·p1(A,B) = f & u·p2(A,B) = g) ]. 

In the Foundation Ontology this universal property is expressed by the definition of the mediator func-
tion ‘SET.LIM.PRD$mediator’ in axiom SET.LIM.PRD$14. 

7. The following axiom extends the binary product to functions. 

∀ (f,g,A,B,C,D) [ (f:A→B & g:C→D) ⇒    
( (f×g):A×C→B×D 
  & (f×g)·p1(B,D) = p1(A,C)·f 
   & (fxg)·p2(B,D) = p2(A,C)·g ) ]. 

In the Foundation Ontology this property is expressed by the definition of the function binary product  
‘SET.LIM.PRD.FTN$binary-product’ in axiom SET.LIM.PRD.FTN$6. 
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Topos Axioms 

The terminology and axioms in this section extend those of the previous sections to a non-trivial Boolean 
topos. 

o A monomorphism in a category corresponds to an injection. The assertion that a morphism is a mono-
morphism is denoted by ‘mono(f)’. An epimorphism in a category corresponds to a surjection. The as-
sertion that a morphism is an epimorphism is denoted by ‘epi(f)’. In the setting of topos theory, 
monomorphisms are regarded as subobjects. In the Foundation Ontology the injection class is declared 
by the term ‘SET.FTN$injection’ [axiom SET.FTN$13] and monomorphism class is declared by the 
term ‘SET.FTN$monomorphism’ [axiom SET.FTN$14]; also, the surjection class is declared by the term 
‘SET.FTN$surjection’ [axiom SET.FTN$15] and epimorphism class is declared by the term 
‘SET.FTN$epimorphism’ [axiom SET.FTN$16]. 

o Given two objects A and B in a category the exponent ‘B^A’ is the collection of all morphisms from A 
to B. In the Foundation Ontology the exponent class is declared by the term ‘SET.CCC$exponent’ 
[axiom SET.CCC$1]. 

o Given two objects A and B in a Cartesian-closed category the evaluation morphism ‘ev(A,B)’ evalu-
ates morphisms: when applied to a morphism f from A to B and a value a in A it returns the image f(a). 
In the Foundation Ontology the evaluation function is declared by the term ‘SET.CCC$evaluation’ 
[axiom SET.CCC$2]. 

o The truth object is denoted by ‘1+1’, a disjoint union of two copies of 1. In the Foundation Ontology 
the truth class is defined by 2 = {0,  1} , where the elements are regarded as the truth values 0 = false 
and 1 = true. It is isomorphic to the disjoint union 2 ≅  1+1. In the Foundation Ontology the truth class 
is declared by the term ‘SET.TOP$truth’ [axiom SET.TOP$5]. 

o The binary coproduct injections in1 : 1 → 1+1 and in2 : 1 → 1+1 are (function) elements of 1+1 corre-
sponding to the truth values false and true, respectively. In the Foundation Ontology the true function 
(second injection) is declared by the term ‘SET.TOP$true’ [axiom SET.TOP$6]. 

The axioms for a Boolean topos are as follows. 

8. A morphism is a monomorphism when it can be cancelled on the right (in diagrammatic order). Dually, 
a morphism is an epimorphism when it can be cancelled on the left. The definitions of monomorphism 
and epimorphisms are given by the following axioms. 

∀ (f) [ mono(f) ⇔ ∀ (g,h)(g·f = h·f ⇒  g = h) ]. 
∀ (f) [ epi(f) ⇔ ∀ (g,h)(f·g = f·h ⇒  g = h) ]. 

In the Foundation Ontology the first definition is expressed as the definition of the monomorphism 
class ‘SET.FTN$monomorphism’ in axiom SET.FTN$14, and the second definition is expressed as the 
definition of the epimorphism class ‘SET.FTN$epimorphism’ in axiom SET.FTN$16. 

9. A Cartesian-closed category is a finitely-closed category whose binary product functor (needs a spe-
cific binary product here) is left adjoint to the exponent functor. This is expressed in the following 
axiom. 

∀ (f,A,B,C) [ f:CxA→B ⇒  ∃ !(u)(u:C→B^A & (u×Id(A))·ev(A,B) = f) ]. 

In the Foundation Ontology the “right adjoint” map, that takes the function f and returns the function u, 
is expressed as the definition of the adjoint function ‘SET.CCC$adjoint’ in axiom SET.CCC$3. 

10. An elementary topos is a Cartesian-closed category that has a subobject classifier – an object Ω and a 
morphism true : 1 → Ω that satisfy the axiom below. A classical topos can use the Boolean truth ob-
ject as subobject classifier 1+1 = Ω. The following subobject classifier axiom states that every subob-
ject f of an object B has a unique characteristic function u of that object – a function that makes the 
diagram below (Figure 3) a pullback diagram.  

∀ (f,A,B) [ (f:A→B & mono(f)) ⇒  ∃ !(u)(u:B→1+1 & 
    ∀ (h,k)((k·i2 = h·u) ⇒  ∃ !(v)(v·f = h)) ) ]. 
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In the Foundation Ontology the map, that takes the subobject f and returns the characteristic morphism 
u, is expressed as the definition of the character function ‘SET.TOP$character’ in axiom SET.TOP$7. 

11. A topos is Boolean when the truth injections in1 : 1 → 1+1 and in2 : 1 → 1+1 (truth value elements 
false and true) are complements. Equivalently, a topos is Boolean when the collection of subobjects of 
any object forms a Boolean algebra. 

¬(i1 = i2) 
& ∀ (f,g,A) [ (f:1→A & g:1→A) ⇒  ∃ !(u)(u:(1+1)→A & i1·u = f & i2·u = g) ]. 

In the Foundation Ontology the fact that the quasi-topos of classes and function is Boolean follows 
from the fact that the ‘(el2ftn ?c)’ is bijective for each class C [axiom SET.TOP$7]. 

Classical Analysis 

The following axioms allow us to get classical analysis by using natural numbers in a well-pointed topos 
with choice. 

12. A natural numbers object in a category with terminal object and binary coproducts is an initial algebra 
for the endofunctor T(-) = 1+(-) on the category. The following axiom encodes this idea. 

∃ (N,0,s) [ (0:1→N & s:N→N) &  
            ∀ (A,x,f) [ (x:1→A & f:A→A) ⇒  ∃ !(u)(u:N→A & 0·u = x & s·u = u·f) ] ]. 

In the Foundation Ontology the natural numbers class ‘SET.TOP$natural-numbers’, zero element 
‘SET.TOP$zero’ and successor endofunction ‘SET.TOP$successor’ satisfy the axiom for a natural 
numbers object in the quasi-topos of classes and functions [axiom SET.TOP$8]. 

13. The following axiom is the extensionality principle for morphisms of a category with 1. It states that 1 
is a generator; that is, that morphisms are determined by their effect on the source (domain) elements. 
A category is degenerate when all of its objects are isomorphic. A non-degenerate topos that satisfies 
extensionality for morphisms is called well-pointed.  

∀ (f,g,A,B) [ (f:A→B & g:A→B) ⇒   
    ∀ (h) ( (h:1→A & (h·f = h·g)) ⇒  (f = g) ) ]. 

In the Foundation Ontology axiom SET.TOP$9 states that functions (morphisms in the quasi-category of 
classes) satisfy the extensionality principle.  

14. The following axiom is one variant of the axiom of choice – it uses the standard definition of an epi-
morphism. The axiom of choice implies Boolean-ness for any topos. 

∀ (f,A,B) [ epi(f) ⇒  ∃ (g)(g:B→A & g·f = Id(B)) ]. 

In the Foundation Ontology axiom SET.TOP$10 states that the quasi-category of classes and functions  
satisfies the axiom of choice.  

Sketches 
Here is the paraphrase of a discussion of sketches by Vaughan Pratt.  

A sketch is the categorical counterpart of a first-order theory. It specifies the language of the theory 
in terms of limits and colimits of diagrams.  The language of (finitary) quantifier-free logic is repre-
sentable entirely with finite product (FP) sketches, i.e. no colimits and only discrete limits.  Finite 

2 = 1+1 

B 

1 

A ↣ 

↓ 

↣ 

↓ ┌  u 

f 

t 

Figure 2: Subobject Classifier 
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http://www.math.psu.edu/simpson/fom/postings/9802/msg00189.html
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limit (FL) sketches allow all limits, e.g. pullbacks which come in handy if you want to axiomatize 
composition of morphisms as a total operation (not possible with ordinary first order logic or FP 
sketches). Colimits extend the expressive power of sketches in much the same way that least-fixpoint 
operators extend the expressive power of first order logic (made precise by a very nice theorem of 
Adamek and Rosicky), but completely dually to limits.  (Fixpoint operators are not obviously dual to 
anything in first order logic.) The machinery of sketches is either appealingly economical and ele-
gant or repulsively complex and daunting depending on whether you look at it from the perspective 
of category theory or set theory. As a formalism for categorical foundations sketches have the same 
weakness as Colin McLarty’s axiomatization of categories: they are based on ordinary categories, 
with no 2-cells.  (Again let me stress the importance of 2-categories, i.e. not just line segments but 
surface patches, for foundations.)  On the one hand I'm sure this is not an intrinsic limitation of 
sketches, on the other I don't know what's been done along those lines to date.  Higher-dimensional 
sketches are surely well worth pursuing. 

It would be beneficial to develop sketches of the IFF metalevel for comparison and contrast. 

Fibrations 
There is a need to incorporate some aspect of 
fibrations and indexed categories in the Founda-
tion Ontology. For one example, the (small) 
Classification Namespace represents the category 
Classification, which is part of a fibered span 
(see Figure 2). For another example, the Model 
Namespace is a fibered span along instances and 
types; the type fiber is needed to specify satisfac-
tion. See McLarty’s suggestion to use Benabou’s 
theory of fibrations and definability. My current belief is that fibers can be represented in the Foundation 
Ontology, without a full-blown representation of fibrations a la Benabou. However, this will be tested by 
further development of the category theory aspect of the Foundation Ontology, which needs to contain a 
theory of fibrations and indexed categories. 

inst−1(Set) = Classification = typ−1(Set) 

inst⊣℘ op 

Setop Set 
inst 

typ ℘ op 
℘  ℘ ⊣ typ 

Figure 4: The Classification Fibered Span 

http://www.risc.uni-linz.ac.at/research/category/risc/catlist/goedel-cat
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Part I: The Large Aspect 

The Namespace of Conglomerates 
In a set-theoretic sense, this namespace sits at the top of the IFF Foundation Ontology. The suggested pre-
fix for this namespace is ‘CNG’, standing for conglomerates. When used in an external namespace, all terms 
that originate from this namespace can be prefixed with ‘CNG’. This namespace represents conglomerates, 
and their functions and relations. No sub-namespaces are needed. As illustrated in Diagram 1, conglomer-
ates characterized the overall architecture for the large aspect of the Foundation Ontology. Nodes in this 
diagram represent conglomerates and arrows represent conglomerate functions. The small oval on the right, 

containing the function and class conglomerates, represents the namespace (‘SET’) of large sets (classes) 
and their functions. The next large oval, containing the conglomerates of Graphs and their Morphisms, 
represents the large graph namespace (‘GPH’). Also indicated are namespaces for categories, functors, natu-
ral transformations and adjunctions.  

Conglomerates 
CNG 

The largest collection in the IFF Foundation Ontology is the Conglomerate collection. Conglomerates are 
collections of classes or individuals. In this version of the Foundation Ontology we will not need to axio-
matize conglomerates in great detail. In addition to the conglomerate collection itself, we also provide sim-
ple terminology for conglomerate functions, conglomerate relations, and their signatures. 

o Let ‘conglomerate’ be the Foundation Ontology term that denotes the Conglomerate collection. Con-
glomerates are used at the core of the Foundation Ontology for several things: to specify the collection 
of classes, to specify the collection of class functions and their injection, surjection and bijection sub-
collections, and to specify the shape diagrams and cones for the various kinds of finite limits. Every 
conglomerate is represented as a KIF class. The collection of all conglomerates is not a conglomerate. 
(1) (KIF$class collection) 
    (forall (?c (collection ?c)) (KIF$class ?c)) 
 
(2) (collection conglomerate) 
    (forall (?c (conglomerate ?c)) (collection ?c)) 
    (not (conglomerate conglomerate)) 

o There is a subconglomerate binary KIF relation.  
(3) (KIF$relation subconglomerate) 

Diagram 2: Core Conglomerates and Functions 
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    (KIF$signature subconglomerate conglomerate conglomerate) 
    (forall (?k1 (conglomerate ?k1) ?k2 (conglomerate ?k2)) 
        (<=> (subconglomerate ?k1 ?k2) (KIF$subclass ?k1 ?k2))) 

o There is a disjoint binary KIF relation. 
(4) (KIF$relation disjoint) 
    (KIF$signature disjoint conglomerate conglomerate) 
    (forall (?c1 (conglomerate ?c1 ?c2 (conglomerate ?c2)) 
        (<=> (disjoint ?c1? ?c2) 
             (not (exists (?x (?c1 ?x) (?c2 ?x)))))) 

o Let ‘function’ be the Foundation Ontology term that denotes the Function collection. We assume the 
following definitional axiom has been stated in the Basic KIF Ontology. 
    (forall (?f) 
        (<=> (KIF$function ?f) 
             (and (KIF$relation ?f) (KIF$functional ?f)))) 

○ Every conglomerate function is represented as a KIF function. The signature of a conglomerate func-
tion is the same as its KIF signature, except that the KIF classes in the signature are conglomerates.  
(4) (KIF$relation signature) 
  
(5) (collection function) 
    (forall (?f (function ?f)) (KIF$function ?f)) 
 
    (forall (?f (function ?f) @cng) 
        (<=> (signature ?f @cng) 
             (and (KIF$signature ?f @cng) 
                  (function ?f) 
                  (forall (?n (KIF$posint ?n) (=< ?n (length [@cng]))) 
                      (conglomerate ([@cng] ?n)))))) 

○ Let ‘relation’ be the Foundation Ontology term that denotes the Binary Relation collection. Every 
conglomerate relation is represented as a binary KIF relation. The KIF signature of a conglomerate re-
lation is given by its conglomerates.  
(6) (collection relation) 
    (forall (?r (relation ?r)) (and (KIF$relation ?r) (KIF$binary ?r))) 
 
(7) (KIF$function conglomerate1) 
    (KIF$signature conglomerate1 relation conglomerate) 
 
(8) (KIF$function conglomerate2) 
    (KIF$signature conglomerate2 relation conglomerate) 
 
    (forall (?r (relation ?r)) 
        (KIF$signature ?r (conglomerate1 ?r) (conglomerate2 ?r))) 
 
(9) (KIF$function extent) 
    (KIF$signature extent relation conglomerate) 
 
    (forall (?r (relation ?r) ?z ((extent ?r) ?z)) 
        (and (KIF$pair ?z) 
             ((conglomerate2 ?r) (?z 1)) 
             ((conglomerate2 ?r) (?z 2)))) 
 
    (forall (?r (relation ?r) 
             ?x1 ((conglomerate1 ?r) ?x1) 
             ?x2 ((conglomerate2 ?r) ?x2)) 
         (<=> ((extent ?r) [?x1 ?x2]) 
              (?r ?x1 ?x2))) 
 
    (forall (?r (relation ?r) 
             ?s (relation ?s)) 
        (=> (and (= (conglomerate1 ?r) (conglomerate1 ?s)) 
                 (= (conglomerate2 ?r) (conglomerate2 ?s)) 
                 (= (extent ?r) (extent ?s))) 
            (= r s))) 
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o There is a subrelation binary CNG relation that restricts the KIF subrelation relation to conglomerates.  
(10) (KIF$relation subrelation) 
     (KIF$signature subrelation relation relation) 
     (forall (?r1 (relation ?r1) ?r2 (relation ?r2)) 
         (<=> (subrelation ?r1 ?r2) (KIF$subrelation ?r1 ?r2))) 

 



IFF Foundation Ontology 

Robert E. Kent Page 11 6/20/2001 

The Namespace of Classes (Large Sets) 
This is the core namespace in the Foundation Ontology. The suggested prefix for this namespace is ‘SET’, 
standing for large sets. When used in an external namespace, all terms that originate from this namespace 
can be prefixed with ‘SET’. This namespace represents classes (large sets) and their functions. The follow-
ing terms are declared and axiomatized in this namespace. As indicated in the left column of Table 2, sev-
eral sub-namespaces are needed.  

Table 2: Terms introduced in the large set namespace 

 KIF$class Unary KIF$function Binary 
KIF$function 

SET ‘class’   
SET 
.FTN 

‘function’ 
‘parallel-pair’ 
‘injection’, ‘surjec-
tion’, ‘bijection’ 
‘monomorphism’, ‘epi-
morphism’, ‘isomor-
phism’ 

‘source’, ‘target’, ‘identity’ 
‘image’, ‘inclusion’, ‘fiber’, ‘inverse-image’ 

‘composition’ 
 

SET 
.LIM 

‘unit’, ‘terminal’ ‘unique’ 
‘tau-cone’, ‘tau’ 

 

SET 
.LIM 
.PRD 

‘diagram’, ‘pair’ 
‘cone’ 

‘class1’, ‘class2’, ‘opposite’ 
‘cone-diagram’, ‘vertex’, ‘first’, ‘second’ 
‘limiting-cone’, ‘limit’, ‘binary-product’,  
‘projection1, ‘projection2’ 
‘mediator’ 
‘binary-product-opspan’ 
‘tau-cone’,  ‘tau’ 

‘pairing-cone’, 
‘pairing’ 

SET 
.LIM 
.PRD 
.FTN 

‘pair’ ‘source’, ‘target’, ‘class1’, ‘class2’ 
‘binary-product’ 

 

SET 
.LIM 
.EQU 

‘diagram’, ‘parallel-
pair’, ‘cone’ 

‘source’, ‘target’, ‘function1’, ‘function2’ 
‘cone-diagram’, ‘vertex’, ‘function’ 
‘limiting-cone’, ‘limit’, ‘equalizer’,  
‘canon’ 
‘mediator’ 
‘kernel-parallel-pair’,  ‘kernel’ 

 

SET 
.LIM 
.SEQU 

‘lax-diagram’, ‘lax-
parallel-pair’, ‘lax-
cone’ 

‘order’, ‘source’, ‘function1’, ‘function2’,  
‘parallel-pair’ 
‘lax-cone-diagram’, ‘vertex’, ‘function’ 
‘limiting-lax-cone’, ‘lax-limit’,  
‘subequalizer’, ‘subcanon’ 
‘mediator’ 
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SET 
.LIM 
.PBK 

‘diagram’, ‘opspan’, 
‘cone’ 

‘opvertex’, ‘opfirst’, ‘opsecond’, ‘opposite’ 
‘pair’ 
‘cone-diagram’, ‘vertex’, ‘first’, ‘second’ 
‘limiting-cone’, ‘limit’, ‘pullback’, 
‘projection1’, ‘projection2’, ‘relation’ 
‘mediator’ 
‘fiber’, ‘fiber1’, ‘fiber2’, ‘fiber12’, ‘fi-
ber21’ 
‘fiber-embedding’,  
‘fiber1-embedding’,  ‘fiber2-embedding’,  
‘fiber12-embedding’, ‘fiber21-embedding’ 
‘fiber1-projection’,  ‘fiber2-projection’ 
‘kernel-pair-opspan’,  ‘kernel-pair’ 
‘tau-cone’,  ‘tau’  

‘pairing-cone’, 
‘pairing’ 

SET 
.CCC 

 ‘evaluation’ 
‘adjoint’ 

‘exponent’ 
 

SET 
.TOP 

 ‘subclass’ 
‘element’, ‘el2ftn’  
‘truth’, ‘true’ 
‘character’ 

‘constant’ 
 

The signatures of some of the relations and functions in the CNG and SET namespace are as follows. 

Table 3: Signatures for some relations and functions in the large set and conglomerate namespaces 

subconglomerate 
 ⊆  conglomerate × conglomerate 
signature ⊆  function × KIF$sequence 
subclass ⊆  class × class 
disjoint ⊆  class × class 
partition ⊆  class × KIF$sequence 
restriction ⊆  function × CNG$function 
restriction-
pullback ⊆  function × CNG$function 

source, target : function → class  
identity, range : function → class  
vertex : span → class 
first, second : span → function 
opvertex : opspan → class 
opfirst, opsecond : opspan → function 
opposite : opspan → opspan 

composition : function × function → function 
 

 unique : class → function 
cone-opspan : cone → opspan 
vertex : cone → class 
first, second, mediator : cone → function 
limiting-cone : opspan → cone 

binary-product : class × class → class 
binary-product-
opspan : class × class → opspan 
 

 power : class → relation exponent : class × class → class 
evaluation : class × class → function 

Classes 
SET 

The collection of all classes is denoted by Class. It is an example of a conglomerate in (Adámek, Herrlich 
and Strecker, 1990). Also, since we need power classes, no universal class Thing is postulated (We may 
want to postulate the existence of a universal conglomerate instead). 

o Let ‘class’ be the SET namespace term that denotes the Class collection. Classes are mainly used in 
IFF to specify the object and morphism collections of large categories such as Classification. Seman-
tically, every class is a conglomerate; hence syntactically, every class is represented as a KIF class. 
The collection of all classes is not a class.  
(1) (CNG$conglomerate class) 
    (forall (?c (class ?c)) (CNG$conglomerate ?c)) 
    (not (class class)) 
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o There is a subcollection binary KIF relation that compares a class to a conglomerate by restricting the 
subconglomerate relation. There is a subclass binary KIF relation that restricts the subconglomerate re-
lation to classes.  
(2) (CNG$relation subcollection) 
    (CNG$signature subcollection class CNG$conglomerate) 
    (forall (?c1 (class ?c1) ?c2 (CNG$conglomerate ?c2)) 
        (<=> (subcollection ?c1 ?c2) (CNG$subconglomerate ?c1 ?c2))) 
 
    (CNG$relation subclass) 
    (CNG$signature subclass class class) 
    (forall (?c1 (class ?c1) ?c2 (class ?c2)) 
        (<=> (subclass ?c1 ?c2) (CNG$subconglomerate ?c1 ?c2))) 

o There is a disjoint binary CNG relation. 
(3) (CNG$relation disjoint) 
    (KIF$signature disjoint class class) 
    (forall (?c1 (class ?c1 ?c2(class ?c2) 
        (<=> (disjoint ?c1? ?c2) 
             (not (exists (?x (?c1 ?x) (?c2 ?x)))))) 

o Any SET class can be partitioned. A partition of the class C by the sequence of classes C1, …, Cn is 
denoted by the expression ‘(partition ?c [?c1 … ?cn])’. All elements in a partition are classes. 
(4) (CNG$relation partition) 
    (CNG$signature partition class KIF$sequence) 
    (forall (?c (class ?c) ?p (KIF$sequence ?p)) 
        (=> (partition ?c ?p) 
            (and (forall (?pi (KIF$element-of ?pi ?p)) 
                     (and (class ?pi) (subclass ?pi ?c))) 
                 (forall (?j (=< ?j (length ?p)) ?k (=< ?k (length ?p))) 
                     (=> (not (= ?i ?j)) (disjoint (?s ?j) (?s ?k))))))) 

o For any sequence of SET classes there is a union class and an intersection class.  
(5) (CNG$function union) 
    (forall (@cng ?x) 
        (<=> ((union @cng) ?x) 
             (exists (?n (KIF$posint ?n) (=< ?n (length [@cng]))) 
                 (([@cng] ?n) ?x)))) 
 
(6) (CNG$function intersection) 
    (forall (@cng ?x) 
        (<=> ((intersection @cng) ?x) 
             (forall (?n (KIF$posint ?n) (=< ?n (length [@cng]))) 
                 (([@cng] ?n) ?x)))) 

o There is a foundational question here: “Is the power of a class another class?” We have taken the 
strong answer “Yes!” and made the power of a class a class. The motivation is the need to define fi-
bers. More strongly, we are assuming that classes and their functions satisfy the axioms of a topos. 
Eventually we may need to use Jean Benabou’s foundational approach here: see “Fibered categories 
and the foundations of naive category theory” by Jean Benabou, in the Journal of Symbolic Logic 50, 
10–37, 1985. But for now we only define the fibrational structure that seems to be required. For any 
class X the power-class over X is the collection of all subclasses of X. There is a unary CNG ‘power’ 
function that maps a class to its associated power. 
(7) (CNG$function power) 
    (CNG$signature power SET$class SET$class) 
    (forall (?c1 (SET$class ?c1) ?c0) 
        (<=> ((power ?c1) ?c0) (SET$subclass ?c0 ?c1))) 

Functions 
SET.FTN 

A (class) function is a special case of a unary conglomerate function with source and target classes. A class 
function is also known as a SET function. An SET function is intended to be an abstract semantic notion. 
Syntactically however, every function is represented as a unary KIF function. The signature of SET func-



IFF Foundation Ontology 

Robert E. Kent Page 14 6/20/2001 

tions, considered to be CNG functions, is given by their source and target. A SET 
function with source (domain) class X and target (codomain) class Y is a triple 
(X, Y, f), where the class f ⊆  X×Y is the underlying relation of the function. We use 
the notation (Figure 1) f : X → Y to indicate the source-target typing of a class func-
tion. All SET functions are total, hence must satisfy the constraint that for every 
x ∈  X there is a unique y ∈  Y with (x, y) ∈  f. We use the notation f(x) = y for this 
instance.  

For SET functions both composition and identities are defined. Given two functions f : X → Y and 
g : Y → Z the composition function f · g : X → Z is defined by f · g (x) = g(f(x)) for all x ∈  X. Composition 
is associative: f · ( g · h) = (f · g) · h. For any class X there is an identity function idX : X → X. Identity satis-
fies the identity laws: idX · f = f = f · idY. Composition and identity make the collections of classes and func-
tions into a quasi-category. This is not a true category, since the collection of all classes and the collection 
of all class functions are not classes, but conglomerates. 

o Let ‘function’ be the SET Namespace term that denotes the Function collection. 
(1) (CNG$conglomerate function) 
    (forall (?f (function ?f)) (CNG$function ?f)) 
 
(2) (CNG$function source) 
    (CNG$signature source function SET$class) 
 
(3) (CNG$function target) 
    (CNG$signature target function SET$class) 
 
    (forall (?f (function ?f)) 
        (CNG$signature ?f (source ?f) (target ?f))) 
 
    (forall (?f (function ?f)) 
        (forall (?x ((source ?f) ?x)) 
            (exists (?y ((target ?f) ?y)) 
                (= (?f ?x) ?y)))) 

○ Any function can be embedded as a binary relation. 
(4) (CNG$function fn2rel) 
    (CNG$signature fn2rel function REL$relation) 
    (forall (?f (function ?f) 
        (and (= (REL$class1 (fn2rel ?f)) (source ?f)) 
             (= (REL$class2 (fn2rel ?f)) (target ?f)))) 
    (forall (?f (function ?f) 
             ?x ((source ?f) ?x) 
             ?y ((target ?f) ?y)) 
        (<=> ((REL$extent (fn2rel ?f)) [?x ?y]) 
             (= (?f ?x) ?y))) 

o A class function f : C → D is an ordinary restriction of a conglomerate function F : Č→ Ď when the 
source (target) of f is a subcollection of the source (target) of F and the functions agree (on source ele-
ments of f ); that is, the functions commute (Figure 6) with the source/target inclusions. Ordinary re-
striction is a constraint on the conglomerate function – it says that on the class function source subcol-
lection the conglomerate function maps into the class function target subcollection. 
(5) (KIF$relation restriction) 
    (KIF$signature restriction function CNG$function) 
    (forall (?ftn ?FTN (function ?ftn) (CNG$function ?FTN)) 
        (<=> (restriction ?ftn ?FTN) 
             (exists (?cng1 (CNG$conglomerate ?cng1) 
                      ?cng2 (CNG$conglomerate ?cng2)) 
                 (and (CNG$signature ?FTN ?cng1 ?cng2) 
                      (CNG$subconglomerate (source ?ftn) ?cng1) 
                      (CNG$subconglomerate (target ?ftn) ?cng2) 
                      (forall (?x ((source ?ftn) ?x)) 
                          (= (?ftn ?x) (?FTN ?x)))))) 

X Y 
f 

Figure 5: Class 
Function 

Ď 

Č  

D 

C ↪ 

↪ 
f F 

Figure 6: Ordinary 
restriction 
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o When the source class is conceptually binary by being the pullback of some opspan, the restriction 
operator is more complicated. The pullback restriction operator is defined as follows. A (conceptually 
binary) class function f is a pullback restriction of a binary conglomerate function F when  
1. there is a class opspan f1 : C1 → C, f2 : C2 → C with pullback 1st : C1×CC2 → C1, 

2nd : C1×CC2 → C2 
2. the source and target typings are f : C1×CC2 → C3 and F : K1×K2 → K3, where Cn is a subconglom-

erate of Kn for n = 1, 2, 3 
3. there are conglomerate functions F1 : K1 → K, F2 : K2 → K, where fn is a restriction of Fn, n = 1, 2 
4. the domain of F is the conceptual pullback:  

∀ x1∈ K1 and x2∈ K2, ∃ y∈ K such that F(x1, x2) = y iff F1(x1) = F2(x2) 
5. class pullback constraints equal set pullback constraints on sets: 

∀  x1 ∈  C1 and x2 ∈  C2, [x1, x2] ∈  C1×CC2 iff F1(x1) = F2(x2) 
6. f and F agree on the pullback: 

∀[ x1, x2] ∈  C1×CC2, f([x1, x2]) = F(x1, x2). 

Pullback restriction is also a constraint on the conglomerate function – it says that on the class function 
source subcollection the conglomerate function maps into the class function target subcollection. The 
special case of binary product restriction is included in binary pullback restriction. 
(6) (KIF$relation restriction-pullback) 
    (KIF$signature restriction-pullback function CNG$function) 
    (forall (?ftn (function ?ftn) 
             ?FTN (CNG$function ?FTN)) 
        (<=> (restriction-pullback ?f ?FTN) 
             (exists (?src-opspan (SET.LIM.PBK$opspan ?src-opspan) 
                      ?cng1 (CNG$conglomerate ?cng1) 
                      ?cng2 (CNG$conglomerate ?cng2) 
                      ?cng3 (CNG$conglomerate ?cng3) 
                      ?src1 (SET$class ?src1) 
                      ?src2 (SET$class ?src2) 
                      ?tgt (SET$class ?tgt))  
                      ?FTN1 (CNG$function ?FTN1) 
                      ?FTN2 (CNG$function ?FTN2) 
                 (and (CNG$signature ?FTN ?cng1 ?cng2 ?cng3) 
                      (= (SET.FTN$source ?f) (SET.LIM.PBK$pullback ?src-opspan)) 
                      (= (SET.FTN$target ?ftn) ?tgt) 
                      (= ?src1 (SET.FTN$source (SET.LIM.PBK$opfirst ?src-opspan))) 
                      (= ?src2 (SET.FTN$source (SET.LIM.PBK$opsecond ?src-opspan))) 
                      (SET$subclass ?src1 ?cng1) 
                      (SET$subclass ?src2 ?cng2) 
                      (SET$subclass ?tgt ?cng3) 
                      (CNG$signature ?FTN1 ?cng1 ?cng3) 
                      (CNG$signature ?FTN2 ?cng2 ?cng3) 
                      (restriction (SET.LIM.PBK$opfirst ?src-opspan) ?FTN1) 
                      (restriction (SET.LIM.PBK$opsecond ?src-opspan) ?FTN2) 
                      (forall (?x1 (?cng1 ?x1) ?x2 (?cng2 ?x2)) 
                            (<=> (exists (?y (?cng3 ?y) (= (?g ?x1 ?x2) ?y)) 
                                 (= (?FTN1 ?x1) (?FTN2 ?x2)))) 
                      (forall (?x1 (?src1 ?x1) ?x2 (?src2 ?x2)) 
                          (and (<=> ((SET.FTN$source ?f) [?x1 ?x2]) 
                                    (exists (?y (?cng3 ?y) (= (?g ?x1 ?x2) ?y))) 
                               (= (?ftn [?x1 ?x2]) (?FTN ?x1 ?x2)))))))) 

o The binary subequalizer restriction is defined in a similar manner. Subequalizer restriction is also a 
constraint on the conglomerate function – it says that on the class function source subcollection the 
conglomerate function maps into the class function target subcollection. The special case of binary 
equalizer restriction is included in binary subequalizer restriction. 
(7) (KIF$relation restriction-subequalizer) 

… 
o An endofunction is a function on a particular class; that is, it has that class as both source and target. 

(8) (CNG$conglomerate endofunction) 
    (forall (?f (endofunction ?f)) 
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        (and (function ?f) 
             (= (source ?f) (target ?f)))) 

o For any subclass relationship A ⊆  B there is a unary CNG inclusion function ⊆ A, B : A → B. 
(9) (CNG$function inclusion) 
    (CNG$signature inclusion class class function) 
    (forall (?a (class ?a) ?b (class ?b)) 
        (and (= (source (inclusion ?a ?b)) ?a) 
             (= (target (inclusion ?a ?b)) ?b))) 
    (forall (?a (class ?a) ?b (class ?b) 
             ?x (?a ?x)) 
        (= ((inclusion ?a ?b) ?x) ?x)) 

o There is a unary CNG fiber function. For any class function f : A → B, and any element y ∈  B, the fiber 
of y along f is the class f−1(y) = { x ∈  A | f(x) = y}  ⊆  A. For convenience we define a special fiber inclu-
sion function  ⊆ f, y : f−1(y) → A for any element y ∈  B. 
(10) (CNG$function fiber) 
     (CNG$signature fiber function function) 
     (forall (?f (function ?f)) 
         (and (= (source (fiber ?f)) (target ?f)) 
              (= (target (fiber ?f)) (SET$power (source ?f))))) 
     (forall (?f (function ?f) 
              ?y ((target ?f) ?y) 
              ?x ((source ?f) ?x)) 
         (<=> (((fiber ?f) ?y) ?x) 
              (= (?f ?x) ?y)))) 
 
(11) (CNG$fiber-inclusion) 
     (CNG$signature fiber-inclusion function CNG$function) 
     (forall (?f (function ?f)) 
         (CNG$signature (fiber-inclusion ?f) (target ?f) function)) 
     (forall (?f (function ?f) 
              ?y ((target ?f) ?y)) 
         (and (= (source ((fiber-inclusion ?f) ?y)) ((fiber ?f) ?y)) 
              (= (target ((fiber-inclusion ?f) ?y)) (source ?f)) 
         (= ((fiber-inclusion ?f) ?y) 
            (inclusion ((fiber ?f) ?y) (source ?f)))) 

o There is a unary CNG inverse image function. For any class function f : A → B there is an inverse im-
age function f−1 : ℘ B → ℘ A defined by f−1(Y) =  { x ∈  A | f(x) ∈  Y}  ⊆  A for any subset Y ⊆  B. 
(12) (CNG$function inverse-image) 
     (CNG$signature inverse-image function function) 
     (forall (?f (function ?f)) 
         (and (= (source (inverse-image ?f)) (SET$power (target ?f))) 
              (= (target (inverse-image ?f)) (SET$power (source ?f))))) 
     (forall (?f (function ?f) 
              ?y ((SET$power (target ?f)) ?y) 
              ?x ((source ?f) ?x)) 
         (<=> (((inverse-image ?f) ?y) ?x) 
              (?y (?f ?x)))) 

o There is an binary CNG function composition that takes two composable SET functions and returns 
their composition. 
(13) (CNG$function composition) 
     (CNG$signature composition function function function) 
 
     (forall (?f1 (function ?f1) ?f2 (function ?f2)) 
         (<=> (exists (?f) (= (composition ?f1 ?f2) ?f)) 
              (= (target ?f1) (source ?f2))))) 
 
     (forall (?f1 (function ?f1) ?f2 (function ?f2)) 
         (=> (= (target ?f1) (source ?f2)) 
             (and (= (source (composition ?f1 ?f2)) (source ?f1)) 
                  (= (target (composition ?f1 ?f2)) (target ?f2))))) 
 
     (forall (?f1 (function ?f1) ?f2 (function ?f2)) 
         (=> (= (target ?f1) (source ?f2)) 
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             (forall (?x ((source ?f1) ?x) ?z ((target ?f2) ?z)) 
                 (<=> (= ((composition ?f1 ?f2) ?x) ?z) 
                      (exists (?y ((target ?f1) ?y)) 
                          (and (= (?f1 ?x) ?y) (= (?f2 ?y) ?z))))))) 

o Composition satisfies the usual associative law. 
     (forall (?f1 (function ?f1) ?f2 (function ?f2) ?f3 (function ?f3)) 
         (=> (and (= (target ?f1) (source ?f2)) 
                  (= (target ?f2) (source ?f3))) 
             (= (composition ?f1 (composition ?f2 ?f3)) 
                (composition (composition ?f1 ?f2) ?f3)))) 

o There is an unary CNG function identity that takes a class and returns its associated identity function. 
(14) (CNG$function identity) 
     (CNG$signature identity SET$class function) 
 
     (forall (?c (SET$class ?c)) 
         (and (= (source (identity ?c)) ?c) 
              (= (target (identity ?c)) ?c)))) 
 
     (forall (?c ?x ?y (SET$class ?c)) 
         (<=> (= ((identity ?c) ?x) ?y) 
              (= ?x ?y))) 

o The identity satisfies the usual identity laws with respect to composition. 
     (forall (?f (function ?f)) 
         (and (= (composition (identity (source ?f)) ?f) ?f) 
              (= (composition ?f (identity (target ?f))) ?f))) 

○ The parallel pair is the equivalence relation on functions, where two functions are related when they 
have the same source and target classes.  
(15) (REL.ENDO$equivalence-relation parallel-pair) 
     (= (REL.ENDO$class parallel-pair) function)  
     (forall (?f (function ?f) ?g (function ?g)) 
         (<=> ((REL.ENDO$extent parallel-pair) [?f ?g]) 
              (and (= (source ?f) (source ?g)) 
                   (= (target ?f) (target ?g))))) 

o A function is an injection when no distinct source elements have the same image. A function is an 
monomorphism when right composition by the function is injective. 
(16) (CNG$conglomerate injection) 
     (CNG$subconglomerate injection function) 
     (forall (?f (function ?f)) 
         (<=> (injection ?f) 
              (forall (?x1 ((source ?f) ?x1) 
                       ?x2 ((source ?f) ?x2)) 
                  (=> (= (?f ?x1) (?f ?x2)) 
                      (= ?x1 ?x2))))) 
 
(17) (CNG$conglomerate monomorphism) 
     (CNG$subconglomerate monomorphism function) 
     (forall (?f (function ?f)) 
         (<=> (monomorphism ?f) 
              (forall (?g1 (function ?g1) 
                       ?g2 (function ?g2)) 
                  (=> (and (= (target ?g1) (source ?f)) 
                           (= (target ?g2) (source ?f)) 
                           (= (composition ?g1 ?f) (composition ?g2 ?f)) 
                      (= ?g1 ?g2))))) 

o We can prove the theorem that a function is an injection exactly when it is a monomorphism. 
     (= injection monomorphism) 

o A function is a surjection when all elements of the target class are images. A function is epimorphism 
when left composition by the function is injective.  
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(18) (CNG$conglomerate surjection) 
     (CNG$subconglomerate surjection function) 
     (forall (?f (function ?f)) 
         (<=> (surjection ?f) 
              (forall (?y ((target ?f) ?y)) 
                  (exists (?x ((source ?f) ?x)) 
                      (= (?f ?x) ?y))))) 
 
(19) (CNG$conglomerate epimorphism) 
     (CNG$subconglomerate epimorphism function) 
     (forall (?f (function ?f)) 
         (<=> (epimorphism ?f) 
              (forall (?g1 (function ?g1) 
                       ?g2 (function ?g2)) 
                  (=> (and (= (target ?f) (source ?g1)) 
                           (= (target ?f) (source ?g2)) 
                           (= (composition ?f ?g1) (composition ?f ?g2)) 
                      (= ?g1 ?g2))))) 

o We can prove the theorem that a function is a surjection exactly when it is an epimorphism. 
    (= surjection epimorphism) 

o A function is a bijection when it is both an injection and a surjection. A function is an isomorphism 
when it is both a monomorphism and an epimorphism. 
(20) (CNG$conglomerate bijection) 
     (CNG$subconglomerate bijection function) 
     (forall (?f (function ?f)) 
         (<=> (bijection ?f) 
              (and (injection ?f) (surjection ?f))))  
 
(21) (CNG$conglomerate isomorphism) 
     (CNG$subconglomerate isomorphism function) 
     (forall (?f (function ?f)) 
         (<=> (isomorphism ?f) 
              (and (monomorphism ?f) (epimorphism ?f)))) 

o We can prove the theorem that a function is a bijection exactly when it is an isomorphism. 
    (= bijection isomorphism) 

o There is a unary CNG function image that denotes exactly the image class of the function. 
(22) (CNG$function image) 
     (CNG$signature image function SET$class) 
     (forall (?f ?y (function ?f)) 
         (<=> ((image ?f) ?y) 
              (exists (?x) (and ((source ?f) ?x) (= (?f ?x) ?y))))) 

o For any two functions f1, f2 : A → B = 〈B, ≤〉  whose target is an order, f1 is a subfunction of f2 when the 
images are ordered.  
(23) (CNG$relation subfunction) 
     (CNG$signature subfunction function function ORD$order) 
     (forall (?f1 (function ?f2) 
              ?f2 (function ?f2) 
              ?o (ORD$order ?o)) 
         (<=> (subfunction ?f1 ?f2 ?o) 
              (and (= (source ?f1) (source ?f2)) 
                   (= (target ?f1) (target ?f2)) 
                   (= (target ?f1) (ORD$class ?o)) 
                   (forall (?x ((source ?f1) ?x)) 
                       ((ORD$relation ?o) (?f1 ?x) (?f2 ?x)))))) 

Finite Limits 
SET.LIM 

Here we present axioms that make the quasi-category of classes and functions finitely complete. We assert 
the existence of terminal classes, binary products, equalizers of parallel pairs of functions and pullbacks of 
opspans. All are defined to be specific classes – for example, the binary product is the Cartesian product. 
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Because of commonality, the terminology for binary product, equalizer, subequalizer and pullbacks are put 
into sub-namespace. The diagrams and limits are denoted by both generic and specific terminology. 

The Terminal Class 
o There is a terminal (or unit) class 1. This is specific, and contains exactly one member. For each class 

C there is a unique function !C : C → ! to the unit class. There is a unary CNG ‘unique’ function that 
maps a class to its associated unique SET function. We use a KIF definite description to define the 
unique function. 
(1) (SET$class unit) 
    (SET$class terminal) 
    (= terminal unit) 
    (unit 0) 
    (forall (?x (unit ?x)) (= ?x 0)) 
 
(2) (CNG$function unique) 
    (CNG$signature unique SET$class function) 
    (forall (?c (SET$class ?c)) 
        (= (unique ?c) 
           (the (?f (SET.FTN$function ?f)) 
                (and (= (SET.FTN$source ?f) ?c) 
                     (= (SET.FTN$target ?f) unit) 
                     (forall (?x (?c ?x)) (= (?f ?x) 0)))))) 

Binary Products 
SET.LIM.PRD 

An binary product is a finite limit for a diagram of shape • •. Such a diagram (of classes and functions) is 
called a pair of classes. 

o A pair (of classes) is the appropriate base diagram for a binary product. Each pair consists of a pair of 
classes called class1 and class2. Let either ‘diagram’ or ‘pair’ be the SET Namespace term that de-
notes the Pair collection. Pairs are determined by their two component classes. 
(1) (CNG$conglomerate diagram) 
    (CNG$conglomerate pair) 
    (= pair diagram) 
 
(2) (CNG$function class1) 
    (CNG$signature class1 diagram SET$class) 
 
(3) (CNG$function class2) 
    (CNG$signature class2 diagram SET$class) 
 
    (forall (?p (diagram ?p) ?q (diagram ?q)) 
        (=> (and (= (class1 ?p) (class1 ?q)) 
                 (= (class2 ?p) (class2 ?q))) 
            (= ?p ?q))) 

o Every pair has an opposite.  
(4) (CNG$function opposite) 
    (CNG$signature opposite pair pair) 
 
    (forall (?p (pair ?p)) 
        (and (= (class1 (opposite ?p)) (class2 ?p)) 
             (= (class2 (opposite ?p)) (class1 ?p)))) 

o The opposite of the opposite is the original pair – the following theorem can be proven. 
    (forall (?p (pair ?p)) 
        (= (opposite (opposite ?p)) ?p)) 

o A product cone is the appropriate cone for a binary product. A product cone consists of a pair of func-
tions called first and second. These are required to have a common source class called  the vertex of the 
cone. Each product cone is over a pair. A product cone is the very special case of a cone over a pair (of 
classes). Let ‘cone’ be the SET term that denotes the Product Cone collection.  



IFF Foundation Ontology 

Robert E. Kent Page 20 6/20/2001 
(5) (CNG$conglomerate cone) 
 
(6) (CNG$function cone-diagram) 
    (CNG$signature cone-diagram cone diagram) 
 
(7) (CNG$function vertex) 
    (CNG$signature vertex cone SET$class) 
 
(8) (CNG$function first) 
    (CNG$signature first cone SET.FTN$function) 
    (forall (?r (cone ?r)) 
        (and (= (SET.FTN$source (first ?r)) (vertex ?r)) 
             (= (SET.FTN$target (first ?r)) (class1 (cone-diagram ?r))))) 
 
(9) (CNG$function second) 
    (CNG$signature second cone SET.FTN$function) 
    (forall (?r (cone ?r)) 
        (and (= (SET.FTN$source (second ?r)) (vertex ?r)) 
             (= (SET.FTN$target (second ?r)) (class2 (cone-diagram ?r))))) 

o There is a unary CNG function ‘limiting-cone’ that maps a pair (of classes) to its binary product 
(limiting binary product cone). Axiom (*) asserts that this function is total. This, along with the univer-
sality of the mediator function, implies that a binary product exists for any pair of classes. The vertex 
of the binary product cone is a specific Binary Cartesian Product class given by the CNG function 
‘binary-product’. It comes equipped with two CNG projection functions ‘projection1’ and ‘pro-
jection2’. This notation is for convenience of reference. It is used for pullbacks in general. Axiom (#) 
ensures that this product is specific – that it is exactly the Cartesian product of the pair of classes. 
Axiom (%) ensures that the projection functions are also specific. 
(10) (CNG$function limiting-cone) 
     (CNG$signature limiting-cone diagram cone) 
 (*) (forall (?p (diagram ?p)) 
         (exists (?r (cone ?r)) 
             (= (limiting-cone ?p) ?r))) 
     (forall (?p (diagram ?p)) 
         (= (cone-diagram (limiting-cone ?p)) ?p)) 
 
(11) (CNG$function limit) 
     (CNG$function binary-product) 
     (= binary-product limit) 
     (CNG$signature limit diagram SET$class) 
     (forall (?p (diagram ?p)) 
         (= (limit ?p) (vertex (limiting-cone ?p)))) 
 (#) (forall (?p (diagram ?p) ?z (KIF$pair ?z)) 
         (<=> ((limit ?p) ?z) 
              (and ((class1 ?p) (?z 1)) 
                   ((class2 ?p) (?z 2))))) 
 
(12) (CNG$function projection1) 
     (CNG$signature projection1 diagram SET.FTN$function) 
     (forall (?p (diagram ?p)) 
         (and (= (SET.FTN$source (projection1 ?p)) (limit ?p)) 
              (= (SET.FTN$target (projection1 ?p)) (class1 ?p)) 
              (= (projection1 ?p) (first (limiting-cone ?p))))) 
 
(13) (CNG$function projection2) 
     (CNG$signature projection2 diagram SET.FTN$function) 
     (forall (?p (diagram ?p)) 
         (and (= (SET.FTN$source (projection2 ?p)) (limit ?p)) 
              (= (SET.FTN$target (projection2 ?p)) (class2 ?p)) 
              (= (projection2 ?p) (second (limiting-cone ?p))))) 
 

 (%) (forall (?p (diagram ?p) ?z ((limit ?p) ?z)) 
     (and (= ((projection1 ?p) ?z) (?z 1)) 
          (= ((projection2 ?p) ?z) (?z 2)))) 

o There is a mediator function from the vertex of a product cone over a pair (of classes) to the binary 
product of the pair. This is the unique function that commutes with first and second. We use a KIF 

A1×A2 
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Figure 8: Limit Cone 
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Figure 7: Product Cone 
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definite description abbreviation to define this. Existence and uniqueness represents the universality of 
the binary product operator. We have also introduced a convenience term ‘pairing’. With a pair pa-
rameter, the binary CNG function ‘(pairing ?p)’ maps a pair of SET functions, that form a binary 
cone with the class pair, to their mediator (pairing) function. 
(14) (CNG$function mediator) 
     (CNG$signature mediator cone SET.FTN$function) 
     (forall (?r (cone ?r)) 
         (= (mediator ?r) 
            (the (?f (SET.FTN$function ?f)) 
                 (and (= (SET.FTN$source ?f) (vertex ?r)) 
                      (= (SET.FTN$target ?f) (limit (cone-diagram ?r)))))) 
                      (= (SET.FTN$composition ?f (projection1 (cone-diagram ?r))) 
                         (first ?r)) 
                      (= (SET.FTN$composition ?f (projection2 (cone-diagram ?r))) 
                         (second ?r)))))) 
 
(15) (KIF$function pairing-cone) 
     (KIF$signature pairing-cone diagram CNG$function) 
     (forall (?p (diagram ?p)) 
         (and (CNG$signature (pairing-cone ?p) 
               SET.FTN$function SET.FTN$function cone) 
              (=> (exists (?f1 ?f2 (SET.FTN$function ?f1) (SET.FTN$function ?f2) 
                           ?r (cone ?r)) 
                      (= (((pairing-cone ?p) [?f1 ?f2]) ?r)) 
                  (and (= (SET.FTN$source ?f1) (SET.FTN$source ?f2)) 
                       (= (SET.FTN$target ?f1) (class1 ?p)) 
                       (= (SET.FTN$target ?f2) (class2 ?p)))))) 
     (forall (?p (diagram ?p) 
              ?f1 (SET.FTN$function ?f1) ?f2 (SET.FTN$function ?f2)) 
         (=> (and (= (SET.FTN$source ?f1) (SET.FTN$source ?f2)) 
                  (= (SET.FTN$target ?f1) (class1 ?p)) 
                  (= (SET.FTN$target ?f2) (class2 ?p))) 
             (and (= (cone-diagram ((pairing-cone ?p) ?f1 ?f2)) ?p) 
                  (= (vertex ((pairing-cone ?p) ?f1 ?f2)) (SET.FTN$source ?f1)) 
                  (= (first ((pairing-cone ?p) ?f1 ?f2)) ?f1) 
                  (= (second ((pairing-cone ?p) ?f1 ?f2)) ?f2)))) 
 
(16) (KIF$function pairing) 
     (KIF$signature pairing diagram CNG$function) 
     (forall (?p (diagram ?p)) 
         (CNG$signature (pairing ?p) 
          SET.FTN$function SET.FTN$function SET.FTN$function)) 
     (forall (?p (diagram ?p) 
              ?f1 (SET.FTN$function ?f1) ?f2 (SET.FTN$function ?f2)) 
         (=> (and (= (SET.FTN$source ?f1) (SET.FTN$source ?f2)) 
                  (= (SET.FTN$target ?f1) (class1 ?p)) 
                  (= (SET.FTN$target ?f2) (class2 ?p))) 
             (= ((pairing ?p) ?f1 ?f2) 
                (mediator ((pairing-cone ?p) ?f1 ?f2))))) 

o There is a CNG ‘binary-product-opspan’ function that maps a pair (of classes) to an associated pull-
back opspan, whose opvertex is the terminal class and whose opfirst and opsecond functions are the 
unique functions for the pair of classes.  
(17) (CNG$function binary-product-opspan) 
     (CNG$signature binary-product-opspan diagram SET.LIM.PBK$diagram) 
     (forall (?p (diagram ?p)) 
         (and (= (SET.LIM.PBK$class1 (binary-product-opspan ?p)) (class1 ?p)) 
              (= (SET.LIM.PBK$class2 (binary-product-opspan ?p)) (class2 ?p)) 
              (= (SET.LIM.PBK$opvertex (binary-product-opspan ?p)) terminal) 
              (= (SET.LIM.PBK$opfirst (binary-product-opspan ?p)) 
                 (unique (class1 ?p))) 
              (= (SET.LIM.PBK$opsecond (binary-product-opspan ?p)) 
                 (unique (class2 ?p))))) 

o Using this opspan we can show that the notion of a product could be based upon pullbacks and the 
terminal object. We do this by proving the following theorem that the pullback of this opspan is the bi-
nary product class, and the pullback projections are the product projection functions.  
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     (forall (?p (diagram ?p)) 
         (and (= (binary-product ?p) 
                 (SET.LIM.PBK$pullback (binary-product-opspan ?p))) 
              (= (projection1 ?p) 
                 (SET.LIM.PBK$projection1 (binary-product-opspan2 ?p))) 
              (= (projection2 ?p) 
                 (SET.LIM.PBK$projection2 (binary-product-opspan ?p))))) 

o We can also prove the theorem that the product pairing of a pair (of classes) is the pullback pairing of 
the associated opspan.  
     (forall (?p (diagram ?p)) 
         (= (pairing ?p) 
            (SET.LIM.PBK$pairing (binary-product-opspan ?p)))) 

o For any class C the unit laws for binary product say that the classes 1 ⊗  C and C are isomorphic and 
that the graphs C ⊗  1 and C are isomorphic. The definitions for the appropriate bijection (isomor-
phisms), left unit λC : 1 ⊗  C → C  and right unit ρC : C ⊗  1 → C,  are as follows. 
(18) (CNG$function right-diagram) 
     (CNG$signature right-diagram SET$class diagram) 
 
(19) (CNG$function right) 
     (CNG$signature right SET$class SET.FTN$function) 
 
     (forall (?c (SET$class ?c)) 
         (and (= (set1 (right-diagram ?c)) ?c) 
              (= (set2 (right-diagram ?c)) SET.LIM$unit) 
              (= (right ?c) (SET.LIM.PRD$projection1 (right-diagram ?c))))) 

 
     (forall (?p ?x (pair ?p)) 
        (and (= (SET.FTN$composition (tau ?p) (tau (opposite ?p))) 
                (SET.FTN$identity (binary-product (opposite ?p)))) 
             (= (SET.FTN$composition (tau (opposite ?p)) (tau ?p)) 
                (SET.FTN$identity (binary-product ?p))))) 

o The product of the opposite of a pair is isomorphic to the product of the pair. This isomorphism is me-
diated by the tau or twist function. 
(18) (CNG$function tau-cone) 
     (CNG$signature tau-cone pair cone) 
     (forall (?p (pair ?p)) 
        (and (= (vertex (tau-cone ?p)) (binary-product (opposite ?p))) 
             (= (first (tau-cone ?p)) (projection2 (opposite ?p))) 
             (= (second (tau-cone ?p)) (projection1 (opposite ?p))))) 
  
(19) (CNG$function tau) 
     (CNG$signature tau pair SET.FTN$function) 
     (forall (?p (pair ?p)) 
        (and (= (SET.FTN$source (tau ?p)) (binary-product (opposite ?p))) 
             (= (SET.FTN$target (tau ?p)) (binary-product ?p)))) 
     (forall (?p (pair ?p)) 
        (= (tau ?p) (mediator (tau-cone ?p)))) 

o The tau function is an isomorphism – the following theorem can be proven. 
     (forall (?p ?x (pair ?p)) 
        (and (= (SET.FTN$composition (tau ?p) (tau (opposite ?p))) 
                (SET.FTN$identity (binary-product (opposite ?p)))) 
             (= (SET.FTN$composition (tau (opposite ?p)) (tau ?p)) 
                (SET.FTN$identity (binary-product ?p))))) 

Function 
SET.LIM.PRD.FTN 

The product notion can be extended from pairs of classes to pairs of functions – in short, the product notion 
is quasi-functorial.  
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o The product operator extends from pairs of classes to pairs of functions. This is a specific Cartesian 
Binary Product function. Let ‘pair’ be the SET Namespace term that denotes the function pair collec-
tion.  
(1) (CNG$conglomerate pair) 
 
(2) (CNG$function source) 
    (CNG$signature source pair SET.LIM.PRD$pair) 
 
(3) (CNG$function target) 
    (CNG$signature target pair SET.LIM.PRD$pair) 
 
(4) (CNG$function function1) 
    (CNG$signature function1 pair SET.FTN$function) 
    (forall (?h (pair ?h)) 
        (and (= (SET.FTN$source (function1 ?h)) 
                (SET.LIM.PRD$class1 (source ?h)))) 
             (= (target (function1 ?h)) 
                (SET.LIM.PRD$class1 (target ?h))))) 
 
(5) (CNG$function function2) 
    (CNG$signature function2 pair function) 
    (forall (?h (pair ?h)) 
       (and (= (source (function2 ?h)) 
               (SET.LIM.PRD$class2 (source ?h))) 
            (= (target (function2 ?h)) 
               (SET.LIM.PRD$class2 (target ?h))))) 
 
(6) (CNG$function binary-product) 
    (CNG$signature binary-product pair SET.FTN$function) 
    (forall (?h (pair ?h)) 
       (= (binary-product ?h) 
           (the ?f (SET.FTN$function ?f)) 
               (and (= (SET.FTN$composition ?f (SET.LIM.PRD$projection1 (target ?h))) 
                       (SET.FTN$composition 
                           (SET.LIM.PRD$projection1 (source ?h)) ?f1)) 
                    (= (composition ?f (SET.LIM.PRD$projection2 (target ?h))) 
                       (composition (SET.LIM.PRD$projection2 (source ?h)) ?f2)))))) 

Equalizers 
SET.LIM.EQU 

An (binary) equalizer is a finite limit for a diagram of shape •⇉•. Such a diagram (of classes and func-
tions) is called a parallel pair of functions.  

o A parallel pair is the appropriate base diagram for an equalizer. Each parallel pair consists of a pair of 
functions called funtion1 and function2 that share the same source and target classes. Let either ‘dia-
gram’ or ‘parallel-pair’ be the SET Namespace term that denotes the Parallel Pair collection. Paral-
lel pairs are determined by their two component functions. 
(1) (conglomerate diagram) 
    (conglomerate parallel-pair) 
    (= parallel-pair diagram) 
 
(2) (CNG$function source) 
    (CNG$signature source diagram SET$class) 
 
(3) (CNG$function target) 
    (CNG$signature target diagram SET$class) 
 
(4) (CNG$function function1) 
    (CNG$signature function1 diagram SET.FTN$function) 
  
(5) (CNG$function function2) 
    (CNG$signature function2 diagram SET.FTN$function) 
 
    (forall (?p (diagram ?p)) 
        (and (= (SET.FTN$source (function1 ?p)) (source ?p)) 
             (= (SET.FTN$target (function1 ?p)) (target ?p)) 

class1(P) 

function1(H) 

class1(P′) 

class2(P) 

function2(H) 

class2(P′) 

Figure 8: Pair Morphism 
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             (= (SET.FTN$source (function2 ?p)) (source ?p)) 
             (= (SET.FTN$target (function2 ?p)) (target ?p)))) 
 
    (forall (?p (diagram ?p) ?q (diagram ?q)) 
        (=> (and (= (function1 ?p) (function1 ?q)) 
                 (= (function2 ?p) (function2 ?q))) 
            (= ?p ?q))) 

o Equalizer Cones are used to specify and axiomatize equalizers. Each equalizer cone has an underlying 
parallel-pair, a vertex class, and a function called function, whose source class is the vertex and whose 
target class is the source class of the functions in the parallel-pair. The second function indicated in the 
diagram below is obviously not needed. An equalizer cone is the very special case of a cone over an 
parallel-pair. Let ‘cone’ be the SET Namespace term that denotes the Equalizer Cone collection.  
(6) (CNG$conglomerate cone) 
 
(7) (CNG$function cone-diagram) 
    (CNG$signature cone-diagram cone diagram) 
 
(8) (CNG$function vertex) 
    (CNG$signature vertex cone SET$class) 
 
(9) (CNG$function function) 
    (CNG$signature function cone SET.FTN$function) 
    (forall (?r (cone ?r)) 
       (and (= (SET.FTN$source (function ?r)) (vertex ?r)) 
            (= (SET.FTN$target (function ?r)) 
               (source (cone-diagram ?r))))) 
 
    (forall (?r (cone ?r)) 
       (= (SET.FTN$composition (function ?r) (function1 (cone-diagram ?r))) 
          (SET.FTN$composition (function ?r) (function2 (cone-diagram ?r))))) 

o There is a unary CNG function ‘limiting-cone’ that maps a parallel-pair to its equalizer (limiting 
equalizer cone). Axiom (*) asserts that this function is total. This, along with the universality of the 
mediator function, implies that an equalizer exists for any parallel-pair. The vertex of the equalizer 
cone is a specific Cartesian Equalizer class given by the CNG function ‘equalizer’. It comes 
equipped with a CNG canonical equalizing function ‘canon’. This notation is for convenience of refer-
ence. It is used for equalizers in general. Axiom (#) ensures that this equalizer is specific – that it is ex-
actly the subclass of the source class on which the two functions agree.  
(10) (CNG$function limiting-cone) 
     (CNG$signature limiting-cone diagram cone) 
 (*) (forall (?p (diagram ?p)) 
         (exists (?r (cone ?r)) 
             (= (limiting-cone ?p) ?r))) 
     (forall (?p (diagram ?p)) 
        (= (cone-diagram (limiting-cone ?p)) ?p)) 
 
(11) (CNG$function limit) 
     (CNG$function equalizer) 
     (= limit equalizer) 
     (CNG$signature limit diagram SET$class) 
     (forall (?p (diagram ?p)) 
        (= (limit ?p) (vertex (limiting-cone ?p)))) 
 
(12) (CNG$function canon) 
     (CNG$signature canon diagram SET.FTN$function) 
     (forall (?p (diagram ?p)) 
        (= (canon ?p) (function (limiting-cone ?p)))) 
 
 (#) (forall (?p (diagram ?p)) 
         (and (SET$subclass (limit ?p) (source ?p)) 
              (forall (?x ((limit ?p) ?x)) 
                  (= ((canon ?p) ?x) ?x))) 

o There is a mediator function from the vertex of a cone over a parallel pair (of functions) to the equal-
izer of the parallel pair. This is the unique function that commutes with equalizing canon and cone 
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function. We use a KIF definite description abbreviation to define this. Existence and uniqueness 
represents the universality of the equalizer operator.  
(13) (CNG$function mediator) 
     (CNG$signature mediator cone SET.FTN$function) 
     (forall (?r (cone ?r)) 
        (= (mediator ?r) 
           (the (?f (SET.FTN$function ?f)) 
                (and (= (SET.FTN$source ?f) (vertex ?r)) 
                     (= (SET.FTN$target ?f) (limit (cone-diagram ?r))) 
                     (= (SET.FTN$composition ?f (canon (cone-diagram ?r))) 
                        (function ?r)))))) 

o For any function f : A → B there is a kernel equivalence relation on the source set A. 
(14) (CNG$function kernel-parallel-pair) 
     (CNG$signature kernel-parallel-pair SET.FTN$function parallel-pair) 
     (forall (?f (SET.FTN$function ?f)) 
         (and (source (kernel-parallel-pair ?f)) (SET.FTN$source ?f)) 
              (target (kernel-parallel-pair ?f)) (SET.FTN$target ?f)) 
              (function1 (kernel-parallel-pair ?f)) ?f) 
              (function2 (kernel-parallel-pair ?f)) ?f))) 
 
(15) (CNG$function kernel) 
     (CNG$signature kernel SET.FTN$function equivalence-relation) 
     (forall (?f (SET.FTN$function ?f)) 
        (and (= (REL$object (kernel-pair ?f)) (source ?f)) 
             (= (REL$extent (kernel-pair ?f)) (equalizer (kernel-parallel-pair ?f))))) 

Subequalizers 
SET.LIM.SEQU 

A subequalizer is a lax equalizer – a lax limit for a lax diagram consisting of a parallel pair of functions 
whose target is an order.  

o A lax parallel pair f1, f2 : A → B = 〈B, ≤〉  is the appropriate base diagram for a subequalizer. A lax par-
allel pair consists of a parallel pair of functions whose target class is the base class of an order. Let ei-
ther ‘lax-diagram’ or ‘lax-parallel-pair’ be the SET namespace term that denotes the Lax Parallel 
Pair collection.  
(1) (conglomerate lax-diagram) 
    (conglomerate lax-parallel-pair) 
    (= lax-parallel-pair lax-diagram) 
 
(2) (CNG$function order) 
    (CNG$signature order lax-diagram ORD$order) 
 
(3) (CNG$function source) 
    (CNG$signature source lax-diagram SET$class) 
 
(4) (CNG$function function1) 
    (CNG$signature function1 lax-diagram SET.FTN$function) 
 
(5) (CNG$function function2) 
    (CNG$signature function2 lax-diagram SET.FTN$function) 
 
    (forall (?p (lax-diagram ?p)) 
        (and (= (SET.FTN$source (function1 ?p)) (source ?p)) 
             (= (SET.FTN$source (function2 ?p)) (source ?p)) 
             (= (SET.FTN$target (function1 ?p)) (ORD$class (order ?p))) 
             (= (SET.FTN$target (function2 ?p)) (ORD$class (order ?p))))) 

o Any equalizer diagram (parallel pair) embeds as a subequalizer diagram (lax parallel pair), where the 
order has the identity order relation. 
(6) (CNG$function lax) 
    (CNG$signature lax SET.LIM.EQU$diagram lax-diagram) 
 
    (forall (?p (SET.LIM.EQU$diagram ?p)) 
        (and (= (source (lax ?p)) (SET.LIM.EQU$source ?p)) 
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             (= (order (lax ?p)) (ORD$identity (SET.LIM.EQU$target ?p))) 
             (= (function1 (lax ?p)) (SET.LIM.EQU$function1 ?p)) 
             (= (function2 (lax ?p)) (SET.LIM.EQU$function2 ?p)))) 

o The underlying parallel pair of any lax parallel pair (subequalizer diagram) is named. The underlying 
parallel pair of the lax embedding of a strict parallel pair is itself. Lax parallel pairs are determined by 
their target order and parallel pair. 
(7) (CNG$function parallel-pair) 
    (CNG$signature parallel-pair lax-diagram SET.LIM.EQU$diagram) 
 
    (forall (?p (lax-diagram ?p)) 
        (and (= (SET.LIM.EQU$source (parallel-pair ?p)) (source ?p)) 
             (= (SET.LIM.EQU$target (parallel-pair ?p)) (ORD$class (order ?p))) 
             (= (SET.LIM.EQU$function1 (parallel-pair ?p)) (function1 ?p)) 
             (= (SET.LIM.EQU$function2 (parallel-pair ?p)) (function2 ?p)))) 
 
    (forall (?p (SET.LIM.EQU$diagram ?p)) 
        (= (parallel-pair (lax ?p)) ?p)) 
 
    (forall (?p (lax-diagram ?p) ?q (lax-diagram ?q)) 
        (=> (and (= (order ?p) (order ?q)) 
                 (= (parallel-pair ?p) (parallel-pair ?q))) 
            (= ?p ?q))) 

o Subequalizer Cones are used to specify and axiomatize equalizers. Each subequalizer cone has an or-
der, and underlying parallel-pair whose target is that order, a vertex class, and a function called func-
tion, whose source class is the vertex and whose target class is the source class of the functions in the 
parallel-pair. A subequalizer cone is the very special case of a lax cone over an lax-parallel-pair. The 
function composition is only required to be an inequality, not an equality. Let ‘lax-cone’ be the SET 
Namespace term that denotes the Subequalizer Cone collection.  
(8) (CNG$conglomerate lax-cone) 
 
(9) (CNG$function lax-cone-diagram) 
    (CNG$signature lax-cone-diagram lax-cone lax-diagram) 
 
(10) (CNG$function vertex) 
    (CNG$signature vertex lax-cone SET$class) 
 
(11) (CNG$function function) 
     (CNG$signature function lax-cone SET.FTN$function) 
 
     (forall (?r (lax-cone ?r)) 
        (and (= (SET.FTN$source (function ?r)) 
                (vertex ?r)) 
             (= (SET.FTN$target (function ?r))  
                (source (lax-cone-diagram ?r))))) 
 
     (forall (?r (lax-cone ?r)) 
         ((ORD$relation (order (lax-cone-diagram ?r))) 
              ((function1 (lax-cone-diagram ?r)) ((function ?r) ?x)) 
              ((function2 (lax-cone-diagram ?r)) ((function ?r) ?x)))) 

o There is a unary CNG function ‘limiting-lax-cone’ that maps a lax-parallel-pair 
f1, f2 : A → B = 〈B, ≤〉  to its subequalizer (lax limiting subequalizer cone). Axiom (*) asserts that this 
function is total. This, along with the universality of the mediator function, implies that an subequalizer 
exists for any lax-parallel-pair. The vertex of the subequalizer cone is a specific Cartesian Subequal-
izer class { a ∈  A | f1(a) ≤ f2(a)}  ⊆  A given by the CNG function ‘subequalizer’. It comes equipped 
with a CNG canonical subequalizing function ‘subcanon’, which is the inclusion of the subequalizer 
class into source class A. This notation is for convenience of reference. It is used for subequalizers in 
general. Axiom (#) ensures that this subequalizer is specific – that it is exactly the subclass of the 
source class on which the two functions are ordered. Obviously, equalizers are a special case of sub-
equalizers – just use the lax embedding of the equalizer diagram. 
(12) (CNG$function limiting-lax-cone) 
     (CNG$signature limiting-lax-cone lax-diagram lax-cone) 

C A 

B 

f 

f1 f2 f · f1  
   ≤ f · f2 

Figure 11: Subequalizer Cone 
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 (*) (forall (?p (lax-diagram ?p)) 
         (exists (?r (lax-cone ?r)) 
             (= (limiting-lax-cone ?p) ?r))) 
     (forall (?p (lax-diagram ?p)) 
        (= (lax-cone-diagram (limiting-lax-cone ?p)) ?p)) 
 
(13) (CNG$function lax-limit) 
     (CNG$function subequalizer) 
     (= subequalizer lax-limit) 
     (CNG$signature subequalizer lax-diagram SET$class) 
     (forall (?p (lax-diagram ?p)) 
        (= (subequalizer ?p) 
           (vertex (limiting-lax-cone ?p)))) 
 
(14) (CNG$function subcanon) 
     (CNG$signature subcanon lax-diagram SET.FTN$function) 
     (forall (?p (lax-diagram ?p)) 
        (= (subcanon ?p) (function (limiting-lax-cone ?p)))) 
 
 (#) (forall (?p (lax-diagram ?p)) 
         (and (SET$subclass (subequalizer ?p) (source ?p)) 
              (forall (?x ((subequalizer ?p) ?x)) 
                  (= ((subcanon ?p) ?x) ?x))) 

o There is a mediator function from the vertex of a lax cone over a lax-parallel-pair to the subequalizer 
of the lax-parallel-pair. This is the unique function that laxly commutes with subequalizing subcanon 
and lax-cone function. We use a KIF definite description abbreviation to define this. Existence and 
uniqueness represents the universality of the subequalizer operator.  
(15) (CNG$function mediator) 
     (CNG$signature mediator lax-cone SET.FTN$function) 
     (forall (?r (lax-cone ?r)) 
        (= (mediator ?r) 
           (the (?f (SET.FTN$function ?f)) 
                (and (= (SET.FTN$source ?f) (vertex ?r)) 
                     (= (SET.FTN$target ?f) (subequalizer (lax-cone-diagram ?r))) 
                     (= (SET.FTN$composition ?f (subcanon (lax-cone-diagram ?r))) 
                        (function ?r)))))) 

o There is one special kind of subequalizer that deserves mention. For any order A = 〈B, ≤〉  the suborder 
of A is the subequalizer for the pair of identity functions idA, idA : A → A = 〈A, ≤〉 .  
(16) (CNG$function suborder-lax-diagram) 
     (CNG$signature suborder-lax-diagram ORD$order lax-diagram) 
     (forall (?o (ORD$order ?o)) 
         (and (= (order (suborder-lax-diagram ?o)) ?o) 
              (= (source (suborder-lax-diagram ?o)) (ORD$class ?o)) 
              (= (function1 (suborder-lax-diagram ?o)) 
                 (SET.FTN$identity (ORD$class ?o))) 
              (= (function2 (suborder-lax-diagram ?o)) 
                 (SET.FTN$identity (ORD$class ?o))))) 
 
(17) (CNG$function suborder) 
     (CNG$signature suborder ORD$order SET$class) 
     (forall (?o (ORD$order ?o)) 
         (= (suborder ?o) (subequalizer (suborder-lax-diagram ?o)))) 

Pullbacks 
SET.LIM.PBK 

A pullback is a finite limit for a diagram of shape •→•←•. Such a diagram (of classes and functions) is 
called an opspan. 

o An opspan is the appropriate base diagram for a pullback. An opspan is the opposite of an span. Each 
opspan consists of a pair of functions called opfirst and opsecond. These are required to have a com-
mon target class, denoted as the opvertex. Let either ‘diagram’ or ‘opspan’ be the SET Namespace 
term that denotes the Opspan collection. Opspans are determined by their pair of component functions. 
(1) (CNG$conglomerate diagram) 

S A 

B 

σ 

f1 f2  

Figure 12: Lax Limit Cone 
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    (CNG$conglomerate opspan) 
    (= opspan diagram) 
 
(2) (CNG$function class1) 
    (CNG$signature class1 diagram SET$class) 
 
(3) (CNG$function class2) 
    (CNG$signature class2 diagram SET$class) 
 
(4) (CNG$function opvertex) 
    (CNG$signature opvertex diagram SET$class) 
 
(5) (CNG$function opfirst) 
    (CNG$signature opfirst diagram SET.FTN$function) 
 
(6) (CNG$function opsecond) 
    (CNG$signature opsecond diagram SET.FTN$function) 
 
    (forall (?s (diagram ?s)) 
       (and (= (SET.FTN$source (opfirst ?s)) (class1 ?s)) 
            (= (SET.FTN$source (opsecond ?s)) (class2 ?s)) 
            (= (SET.FTN$target (opfirst ?s)) (opvertex ?s)) 
            (= (SET.FTN$target (opsecond ?s)) (opvertex ?s)))) 
 
    (forall (?s (diagram ?s) ?t (diagram ?t)) 
       (=> (and (= (opfirst ?s) (opfirst ?t)) 
                (= (opsecond ?s) (opsecond ?t))) 
           (= ?s ?t))) 

o The pair of source classes (prefixing discrete diagram) of any opspan (pullback diagram) is named. 
(7) (CNG$function pair) 
    (CNG$signature pair diagram SET.LIM.PRD$diagram) 
    (forall (?s (diagram ?s)) 
        (and (SET.LIM.PRD$class1 (pair ?s)) (class1 ?s)) 
             (SET.LIM.PRD$class2 (pair ?s)) (class2 ?s)))) 

o Every opspan has an opposite.  
(8) (CNG$function opposite) 
    (CNG$signature opposite opspan opspan) 
 
    (forall (?s (opspan ?s)) 
       (and (= (class1 (opposite ?s)) (class2 ?s)) 
            (= (class2 (opposite ?s)) (class1 ?s)) 
            (= (opvertex (opposite ?s)) (opvertex ?s)) 
            (= (opfirst (opposite ?s)) (opsecond ?s)) 
            (= (opsecond (opposite ?s)) (opfirst ?s)))) 

o The opposite of the opposite is the original opspan – the following theorem can be proven. 
    (forall (?s (opspan ?s)) 
       (= (opposite (opposite ?s)) ?s)) 

o Pullback cones are used to specify and axiomatize pullbacks. 
Each pullback cone has an underlying opspan, a vertex class, and 
a pair of functions called first and second, whose common source 
class is the vertex and whose target classes are the source classes 
of the functions in the opspan. The first and second functions 
form a commutative diagram with the opspan. A pullback cone is 
the very special case of a cone over an opspan. Let ‘cone’ be the 
SET Namespace term that denotes the Pullback Cone collection.  

C 

A1 A2 

B 

1st 2nd 

f1 f2 

Figure 13: Pullback Cone 
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(9) (CNG$conglomerate cone) 
 
(10) (CNG$function cone-diagram) 
     (CNG$signature cone-diagram cone diagram) 
 
(11) (CNG$function vertex) 
     (CNG$signature vertex cone SET$class) 
 
(12) (CNG$function first) 
     (CNG$signature first cone SET.FTN$function) 
     (forall (?r (cone ?r)) 
        (and (= (SET.FTN$source (first ?r)) (vertex ?r)) 
             (= (SET.FTN$target (first ?r)) (class1 (cone-diagram ?r))))) 
 
(13) (CNG$function second) 
     (CNG$signature second cone SET.FTN$function) 
     (forall (?r (cone ?r)) 
        (and (= (SET.FTN$source (second ?r)) (vertex ?r)) 
             (= (SET.FTN$target (second ?r)) (class2 (cone-diagram ?r))))) 
 
     (forall (?r (cone ?r)) 
        (= (SET.FTN$composition (first ?r) (opfirst (cone-diagram ?r))) 
           (SET.FTN$composition (second ?r) (opsecond (cone-diagram ?r))))) 

o There is a unary CNG function ‘limiting-cone’ that maps an opspan to its pullback (limiting pullback 
cone). Axiom (*) asserts that this function is total. This, along with the universality of the mediator 
function, implies that a pullback exists for any opspan. The vertex of the pullback cone is a specific 
Cartesian Pullback class given by the CNG function ‘pullback’. It comes equipped with two CNG 
projection functions ‘projection1’ and ‘projection2’. This notation is for convenience of reference. 
It is used for pullbacks in general. Axiom (#) ensures that this pullback is specific – that it is exactly 
the subclass of the Cartesian product on which the opfirst and opsecond functions agree. Finally, there 
is a unary CNG function ‘relation’ that alternatively represents the pullback as a large relation.  
(14) (CNG$function limiting-cone) 
     (CNG$signature limiting-cone diagram cone) 
 (*) (forall (?s (diagram ?s)) 
         (exists (?r (cone ?r)) 
             (= (limiting-cone ?s) ?r))) 
     (forall (?s (diagram ?s)) 
        (= (cone-diagram (limiting-cone ?s)) ?s)) 
 
(15) (CNG$function limit) 
     (CNG$function pullback) 
     (= pullback limit) 
     (CNG$signature limit diagram SET$class) 
     (forall (?s (diagram ?s)) 
        (= (limit ?s) (vertex (limiting-cone ?s)))) 
 
(16) (CNG$function projection1) 
     (CNG$signature projection1 diagram SET.FTN$function) 
     (forall (?s (diagram ?s)) 
        (and (= (SET.FTN$source (projection1 ?s)) (limit ?s)) 
             (= (SET.FTN$target (projection1 ?s)) (class1 ?s)) 
             (= (projection1 ?s) (first (limiting-cone ?s))))) 
 
(17) (CNG$function projection2) 
     (CNG$signature projection2 diagram SET.FTN$function) 
     (forall (?s (diagram ?s)) 
        (and (= (SET.FTN$source (projection2 ?s)) (limit ?s)) 
             (= (SET.FTN$target (projection2 ?s)) (class2 ?s)) 
             (= (projection2 ?s) (second (limiting-cone ?s))))) 
 
 (#) (forall (?s (diagram ?s)) 
         (and (SET$subclass (limit ?s) (SET.LIM.PRD$binary-product (pair ?s))) 
              (forall (?x1 ?x2 ((limit ?s) [?x1 ?x2])) 
                  (and (= ((projection1 ?s) [?x1 ?x2]) ?x1) 
                       (= ((projection2 ?s) [?x1 ?x2]) ?x2))))) 
 
(18) (CNG$function relation) 

A1×BA2 

A1 A2 

B 

π1 π2 

f1 f2 

Figure 14: Limit Cone 
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     (CNG$signature relation diagram REL$relation) 
     (forall (?s (diagram ?s)) 
        (and (= (REL$object1 (relation ?s)) (class1 ?s)) 
             (= (REL$object2 (relation ?s)) (class2 ?s)) 
             (= (REL$extent (relation ?s)) (limit ?s)))) 

o There is a mediator function from the vertex of a cone over an opspan to the pullback of the opspan. 
This is the unique function that commutes with first and second. We use a KIF definite description ab-
breviation to define this. Existence and uniqueness represents the universality of the pullback operator. 
We have also introduced a convenience term ‘pairing’. With an opspan parameter, the binary CNG 
function ‘(pairing ?s)’ maps a pair of SET functions, that form a cone over the opspan, to their me-
diator (pairing) function. 
(19) (CNG$function mediator) 
     (CNG$signature mediator cone SET.FTN$function) 
     (forall (?r (cone ?r)) 
        (= (mediator ?r) 
           (the (?f (SET.FTN$function ?f)) 
                (and (= (SET.FTN$source ?f) (vertex ?r)) 
                     (= (SET.FTN$target ?f) (limit (cone-diagram ?r))) 
                     (= (SET.FTN$composition ?f (projection1 (cone-diagram ?r))) 
                        (first ?r)) 
                     (= (SET.FTN$composition ?f (projection2 (cone-diagram ?r))) 
                        (second ?r)))))) 
 
(20) (KIF$function pairing-cone) 
     (KIF$signature pairing-cone opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (and (CNG$signature (pairing-cone ?s) 
              SET.FTN$function SET.FTN$function cone) 
             (=> (exists (?f1 ?f2 (SET.FTN$function ?f1) (SET.FTN$function ?f2) 
                          ?r (cone ?r)) 
                     (= (((pairing-cone ?s) [?f1 ?f2]) ?r)) 
                 (and (= (SET.FTN$source ?f1) (SET.FTN$source ?f2)) 
                      (= (SET.FTN$composition ?f1 (opfirst ?s)) 
                         (SET.FTN$composition ?f2 (opsecond ?s))))))) 
     (forall (?s (opspan ?s) 
             ?f1 (SET.FTN$function ?f1) ?f2 (SET.FTN$function ?f2)) 
        (=> (and (= (SET.FTN$source ?f1) (SET.FTN$source ?f2)) 
                 (= (SET.FTN$composition ?f1 (opfirst ?s)) 
                    (SET.FTN$composition ?f2 (opsecond ?s))) 
            (and (= (cone-opspan ((pairing-cone ?s) ?f1 ?f2)) ?s) 
                 (= (vertex ((pairing-cone ?s) ?f1 ?f2)) (SET.FTN$source ?f1)) 
                 (= (first ((pairing-cone ?s) ?f1 ?f2)) ?f1) 
                 (= (second ((pairing-cone ?s) ?f1 ?f2)) ?f2)))) 
 
(21) (KIF$function pairing) 
     (KIF$signature pairing opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (CNG$signature (pairing ?s) 
         SET.FTN$function SET.FTN$function SET.FTN$function)) 
     (forall (?s (opspan ?s) 
              ?f1 (SET.FTN$function ?f1) ?f2 (SET.FTN$function ?f2)) 
        (=> (and (= (SET.FTN$source ?f1) (SET.FTN$source ?f2)) 
                 (= (SET.FTN$composition ?f1 (opfirst ?s)) 
                    (SET.FTN$composition ?f2 (opsecond ?s))) 
            (= ((pairing ?s) ?f1 ?f2) 
               (mediator ((pairing-cone ?s) ?f1 ?f2))))) 

o Associated with any class opspan S = (f1 : A1 → B, f2 : A2 → B) with pullback 1st : A1×BA2 → A1, 
2nd : A1×BA2 → A2 are five fiber functions, the last two of which are derived, 

φS : B → ℘ (A1×BA2)  
φS

1 : B → ℘ A1 
φS

2 : B → ℘ A2 
φS

12 : A1 → ℘ A2 
φS

21 : A2 → ℘ A1 

five embedding functionals, the last two of which are derived,  
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ι S
b : φS(b) → A1×BA2  

ι S
1b : φS

1(b) → A1 
ι S

2b : φS
2(b) → A2 

ι S
12a1 : φS

12(a1) = φ2
S(f1(a1)) → φS(f1(a1)) 

ι S
21a2 : φS

21(a2) = φ1
S(f2(a2)) → φS(f2(a2)) 

and two projection functionals  

πS
1b : φS(b) → φS

1(b) 
πS

2b : φS(b) → φS
2(b) 

Here are the pointwise definitions. 

φS(b) = {( a1, a2) ∈  A1×BA2 | f1(a1) = b = f2(a2)}  ⊆  A1×BA2 
φS

1(b) = { a1 ∈  A1 | f1(a1) = b}  ⊆  A1 

φS
2(b) = { a2 ∈  A2 | f2(a2) = b}  ⊆  A2 

φS
12(a1) = { a2 ∈  A2 | f1(a1) = f2(a2)}  ⊆  φS(f1(a1)) 

φS
21(a2) = { a1 ∈  A1 | f1(a1) = f2(a2)}  ⊆  φS(f2(a2)) 

Using the fiber (point-wise power) functional (-)−1, we can define these as follows.  

φS = (1st · f1)−1  
φS

1 = f1
−1 

φS
2 = f2

−1 
φS

12 = f1 · f2
−1 

φS
21 = f2 · f1

−1 

We clearly have the identifications: f1 · φS
2 = φS

12 and f2 · φS
1 = φS

21. 
(22) (CNG$function fiber) 
     (CNG$signature fiber opspan SET.FTN$function) 
     (forall (?s (opspan ?s)) 
        (and (= (SET.FTN$source (fiber ?s)) 
                (opvertex ?s)) 
             (= (SET.FTN$target (fiber ?s)) 
                (SET$power (pullback ?s))) 
             (= (fiber ?s) 
                (SET.FTN$fiber 
                    (SET.FTN$composition (projection1 ?s) (opfirst ?s))))))  
 
(23) (CNG$function fiber1) 
     (CNG$signature fiber1 opspan SET.FTN$function) 
     (forall (?s (opspan ?s)) 
        (and (= (SET.FTN$source (fiber1 ?s)) (opvertex ?s)) 
             (= (SET.FTN$target (fiber1 ?s)) (SET$power (class1 ?s))) 
             (= (fiber1 ?s) (SET.FTN$fiber (opfirst ?s)))))  
 
(24) (CNG$function fiber2) 
     (CNG$signature fiber2 opspan SET.FTN$function) 
     (forall (?s (opspan ?s)) 
        (and (= (SET.FTN$source (fiber2 ?s)) (opvertex ?s)) 
             (= (SET.FTN$target (fiber2 ?s)) (SET$power (class2 ?s))) 
             (= (fiber2 ?s) (SET.FTN$fiber (opsecond ?s)))))  
 
(25) (CNG$function fiber12) 
     (CNG$signature fiber12 opspan SET.FTN$function) 
     (forall (?s (opspan ?s)) 
        (and (= (SET.FTN$source (fiber12 ?s)) (class1 ?s)) 
             (= (SET.FTN$target (fiber12 ?s)) (SET$power (class2 ?s))) 
             (= (fiber12 ?s) (SET.FTN$composition (opfirst ?s) fiber2)))) 
 
(26) (CNG$function fiber21) 
     (CNG$signature fiber21 opspan SET.FTN$function) 
     (forall (?s (opspan ?s)) 
        (and (= (SET.FTN$source (fiber21 ?s)) (class2 ?s)) 
             (= (SET.FTN$target (fiber21 ?s)) (SET$power (class1 ?s))) 
             (= (fiber21 ?s) (SET.FTN$composition (opsecond ?s) fiber1)))) 
 
(27) (KIF$function fiber-embedding) 
     (KIF$signature fiber-embedding opspan CNG$function) 

A1×BA2 

A1 A2 

1st 2nd 

f1 f2 

φS(b) 

φS
1(b) 

πS
1 

φS
2(b)

πS
2 

ιS
1b ιS

2b 

ιS
b 

B 

Figure 15: Pullback Fibers 
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     (forall (?s (opspan ?s)) 
        (CNG$signature (fiber-embedding ?s) (opvertex ?s) SET.FTN$function)) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y)) 
        (and (= (SET.FTN$source ((fiber-embedding ?s) ?y)) 
                ((fiber ?s) ?y)) 
             (= (SET.FTN$target ((fiber-embedding ?s) ?y)) 
                (pullback ?s)))) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y) 
             ?z (((fiber ?s) ?y) ?z)) 
        (= (((fiber-embedding ?s) ?y) ?z) ?z)) 
 
(28) (KIF$function fiber1-embedding) 
     (KIF$signature fiber1-embedding opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (CNG$signature (fiber1-embedding ?s) (opvertex ?s) SET.FTN$function)) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y)) 
        (and (= (SET.FTN$source ((fiber1-embedding ?s) ?y)) ((fiber1 ?s) ?y)) 
             (= (SET.FTN$target ((fiber1-embedding ?s) ?y)) (class1 ?s)))) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y) 
             ?x1 (((fiber1 ?s) ?y) ?x1)) 
        (= (((fiber1-embedding ?s) ?y) ?x1) ?x1)) 
 
(29) (KIF$function fiber2-embedding) 
     (KIF$signature fiber2-embedding opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (CNG$signature (fiber2-embedding ?s) (opvertex ?s) SET.FTN$function)) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y)) 
        (and (= (SET.FTN$source ((fiber2-embedding ?s) ?y)) ((fiber2 ?s) ?y)) 
             (= (SET.FTN$target ((fiber2-embedding ?s) ?y)) (class2 ?s)))) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y) 
             ?x2 (((fiber2 ?s) ?y) ?x2)) 
        (= (((fiber2-embedding ?s) ?y) ?x2) ?x2)) 
 
(30) (KIF$function fiber12-embedding) 
     (KIF$signature fiber12-embedding opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (CNG$signature (fiber12-embedding ?s) (class1 ?s) SET.FTN$function)) 
     (forall (?s (opspan ?s) 
              ?x1 ((class1 ?s) ?x1)) 
        (and (= (SET.FTN$source ((fiber12-embedding ?s) ?x1)) 
                ((fiber12 ?s) ?x1)) 
             (= (SET.FTN$target ((fiber12-embedding ?s) ?x1)) 
                ((fiber ?s) ((opfirst ?s) ?x1))))) 
     (forall (?s (opspan ?s) 
             ?x1 ((class1 ?s) ?x1) 
             ?x2 (((fiber12 ?s) ?x1) ?x2)) 
         (= (((fiber12-embedding ?s) ?x1) ?x2) [?x1 ?x2])) 
 
(31) (KIF$function fiber21-embedding) 
     (KIF$signature fiber21-embedding opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (CNG$signature (fiber21-embedding ?s) (class2 ?s) SET.FTN$function)) 
     (forall (?s (opspan ?s) 
             ?x2 ((class2 ?s) ?x2)) 
        (and (= (SET.FTN$source ((fiber21-embedding ?s) ?x2)) 
                ((fiber21 ?s) ?x2)) 
             (= (SET.FTN$target ((fiber21-embedding ?s) ?x2)) 
                ((fiber ?s) ((opsecond ?s) ?x2))))) 
     (forall (?s (opspan ?s) 
             ?x2 ((class2 ?s) ?x2) 
             ?x1 (((fiber21 ?s) ?x2) ?x1)) 
        (= (((fiber21-embedding ?s) ?x2) ?x1) [?x1 ?x2])) 
 
(32) (KIF$function fiber1-projection) 
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     (KIF$signature fiber1-projection opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (CNG$signature (fiber1-projection ?s) (opvertex ?s) SET.FTN$function)) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y)) 
        (and (= (SET.FTN$source ((fiber1-projection ?s) ?y)) 
                ((fiber ?s) ?y)) 
             (= (SET.FTN$target ((fiber1-projection ?s) ?y)) 
                ((fiber1 ?s) ?y)))) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y) 
             ?x1 ?x2 (((fiber ?s) ?y) [?x1 ?x2])) 
        (= (((fiber1-projection ?s) ?y) [?x1 ?x2]) ?x1)) 
  
(33) (KIF$function fiber2-projection) 
     (KIF$signature fiber2-projection opspan CNG$function) 
     (forall (?s (opspan ?s)) 
        (CNG$signature (fiber2-projection ?s) (opvertex ?s) SET.FTN$function)) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y)) 
        (and (= (SET.FTN$source ((fiber2-projection ?s) ?y)) 
                ((fiber ?s) ?y)) 
             (= (SET.FTN$target ((fiber2-projection ?s) ?y)) 
                ((fiber2 ?s) ?y)))) 
     (forall (?s (opspan ?s) 
             ?y ((opvertex ?s) ?y) 
             ?x1 ?x2 (((fiber ?s) ?y) [?x1 ?x2])) 
        (= (((fiber2-projection ?s) ?y) [?x1 ?x2]) ?x2)) 

o For any function f : A → B there is a kernel-pair equivalence relation on the source set A. 
(34) (CNG$function kernel-pair-diagram) 
     (CNG$signature kernel-pair-diagram SET.FTN$function opspan) 
     (forall (?f (SET.FTN$function ?f)) 
         (and (class1 (kernel-pair-diagram ?f)) (SET.FTN$source ?f)) 
              (class2 (kernel-pair-diagram ?f)) (SET.FTN$source ?f)) 
              (opvertex (kernel-pair-diagram ?f)) (SET.FTN$target ?f)) 
              (opfirst (kernel-pair-diagram ?f)) ?f) 
              (opsecond (kernel-pair-diagram ?f)) ?f))) 
 
(35) (CNG$function kernel-pair) 
     (CNG$signature kernel-pair SET.FTN$function equivalence-relation) 
     (forall (?f (SET.FTN$function ?f)) 
        (and (= (REL$class (kernel-pair ?f)) (source ?f)) 
             (= (REL$extent (kernel-pair ?f)) (pullback (kernel-pair-diagram ?f))))) 

o The pullback of the opposite of an opspan is isomorphic to the pullback of the opspan. This isomor-
phism is mediated by the tau or twist function. 
(36) (CNG$function tau-cone) 
     (CNG$signature tau-cone opspan cone) 
     (forall (?s (opspan ?s)) 
        (and (= (opspan (tau-cone ?s)) ?s) 
             (= (vertex (tau-cone ?s)) (pullback (opposite ?s))) 
             (= (first (tau-cone ?s)) (projection2 (opposite ?s))) 
             (= (second (tau-cone ?s)) (projection1 (opposite ?s))))) 
  
(37) (CNG$function tau) 
     (CNG$signature tau opspan SET.FTN$function) 
     (forall (?s (opspan ?s)) 
        (and (= (SET.FTN$source (tau ?s)) (pullback (opposite ?s))) 
             (= (SET.FTN$target (tau ?s)) (pullback ?s)))) 
     (forall (?s (opspan ?s)) 
        (= (tau ?s) (mediator (tau-cone ?s)))) 

o The tau function is an isomorphism – the following theorem can be proven. 
     (forall (?s ?x (opspan ?s)) 
        (and (= (SET.FTN$composition (tau ?s) (tau (opposite ?s))) 
                (SET.FTN$identity (pullback (opposite ?s)))) 
             (= (SET.FTN$composition (tau (opposite ?s)) (tau ?s)) 
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                (SET.FTN$identity (pullback ?s))))) 

Opspan Morphisms 
SET.LIM.PBK.MOR 

o An opspan morphism H : S → S ′ from a source opspan S to a target opspan S ′ consists of a triple of 
functions called class1, class2 and opvertex. These are required to have a common target class, de-
noted as the opvertex. Let ‘opspan’ be the SET Namespace term that denotes the Opspan collection.  
(1) (CNG$conglomerate opspan-morphism) 
 
(2) (CNG$function source) 
    (CNG$signature source opspan-morphism opspan) 
 
(3) (CNG$function target) 
    (CNG$signature target opspan-morphism opspan) 
 
(4) (CNG$function opvertex) 
    (CNG$signature opvertex opspan-morphism function) 
 
(5) (CNG$function class1) 
    (CNG$signature class1 opspan-morphism SET.FTN$function) 
 
(6) (CNG$function class2) 
    (CNG$signature class2 opspan-morphism function) 
 
    (forall (?h (opspan-morphism ?h)) 
       (and (= (SET.FTN$source (opvertex ?h)) (opvertex (source ?h))) 
            (= (SET.FTN$target (opvertex ?h)) (opvertex (target ?h))) 
            (= (SET.FTN$source (class1 ?h)) (class1 (source ?h))) 
            (= (SET.FTN$target (class1 ?h)) (class1 (target ?h))) 
            (= (SET.FTN$source (class2 ?h)) (class2 (source ?h))) 
            (= (SET.FTN$target (class2 ?h)) (class2 (target ?h))) 
            (= (SET.FTN$composition (opfirst (source ?h)) (opvertex ?h)) 
               (SET.FTN$composition (class1 ?h) (opfirst (target ?h)))) 
            (= (SET.FTN$composition (opsecond (source ?h)) (opvertex ?h)) 
               (SET.FTN$composition (class2 ?h) (opsecond (target ?h)))))) 

Cartesian Closure 
SET.CCC 

o For any two classes X and Y the exponent or hom-class from X to Y, denoted by YX  = SET[X, Y], is the 
collection of all functions with source X and target Y. There is a binary CNG ‘exponent’ function that 
maps a pair of classes to its associated exponent. 
(1) (CNG$function exponent) 
    (CNG$signature exponent SET$class SET$class SET$class) 
    (forall (?c1 ?c2 (SET$class ?c1) (SET$class ?c2) ?f (SET.FTN$function ?f)) 
       (<=> ((exponent ?c1 ?c2) ?f) 
            (and (= (SET.FTN$source ?f) ?c1) 
                 (= (SET.FTN$target ?f) ?c2)))) 

o For a fixed class A and any class B, the B-th component of A-evaluation εA(B) : BA×A → B maps a pair, 
consisting of a function f : A → B and an element x ∈  A of its source class A, to the image f(x) ∈  B. 
This is a specific evaluation operator. The KIF term ‘evaluation’ represents evaluation.  
(2) (KIF$function evaluation) 
    (KIF$signature evaluation SET$class CNG$function) 
    (forall (?a (SET$class ?a)) 
       (CNG$signature (evaluation ?a) SET$class SET.FTN$function) 
    (forall (?a (SET$class ?a) ?b (SET$class ?b)) 
       (and (= (SET.FTN$source ((evaluation ?a) ?b)) 
               (SET$binary-product (exponent ?a ?b) ?a)) 
            (= (SET.FTN$target ((evaluation ?a) ?b)) ?b))) 
    (forall (?a (SET$class ?a) ?b (SET$class ?b)) 
            ?f ((exponent ?a ?b) ?f) ?x (?a ?x)) 
       (= (((evaluation ?a) ?b) [?f ?x]) (?f ?x)) 

class1(S) 

opvertex(S) 

op1stt(S) class1(H) 

class1(S ′) 

opvertex(S ′) 

op1st(S ′) 

class2(S) 

op2nd(S) class2(H) 

opvertex(H) 
class2(S ′) 

op2nd(S ′) 

Figure 16: Opspan Morphism 
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o A finitely complete category K is Cartesian-closed when for any object a ∈  K the product functor 
(-) × a : K → K has a specified right adjoint (-)a : K → K (with a specified counit εa : (-)a×a ⇒  IdK 
called evaluation) (-)×a ⊣ (-)a. Here we present axioms that make the finitely complete quasi-category 
of classes and functions Cartesian closed. The axiom asserts that binary product is left adjoint to expo-
nent with evaluation as counit: for every function g : C×A → B  there is a unique function  f : C → BA 
called the A-adjoint of g that satisfies f×idA · εA(B) = g. This is a specific right adjoint operator. There is 
a KIF ‘adjoint’ function that represents this right adjoint.  
(3) (KIF$function adjoint) 
    (KIF$signature adjoint SET$class CNG$function) 
    (forall (?a (SET$class ?a)) 
       (CNG$signature (adjoint ?a) SET$class SET$class SET.FTN$function) 
    (forall (?a (SET$class ?a) ?c (SET$class ?c) ?b (SET$class ?b)) 
       (and (= (SET.FTN$source ((adjoint ?a) ?c ?b)) 
               (exponent (SET$binary-product ?c ?a) ?b)) 
            (= (SET.FTN$target ((adjoint ?a) ?c ?b)) 
               (exponent ?c (exponent ?a ?b)))) 
    (forall (?a ?b ?c (SET$class ?a) (SET$class ?b) (SET$class ?c) 
            ?g (SET.FTN$function ?g)) 
       (=> (and (= (SET.FTN$source ?g) (SET$binary-product ?c ?a)) 
                (= (SET.FTN$target ?g) ?b)) 
           (= (((adjoint ?a) ?c ?b) ?g) 
              (the (?f (SET.FTN$function ?f)) 
                   (and (= (SET.FTN$source ?f) ?c) 
                        (= (SET.FTN$target ?f) (exponent ?a ?b)) 
                        (= (SET.FTN$composition 
                               (SET.FTN$binary-product ?f (SET.FTN$identity ?a)) 
                               ((evaluation ?a) ?b)) 
                           ?g)))))) 

Topos Structure 
SET.TOP 

Classes and their functions satisfy the axioms for an elementary topos.  

o There is a unary KIF subobject function that gives the predicates of (injections on) a class. 
(1) (KIF$function subobject) 
    (KIF$signature subobject SET$class SET$class) 
    (forall (?c (SET$class ?c) ?f) 
       (<=> ((subobject ?c) ?f) 
            (and (SET.FTN$injection ?f) 
                 (= (SET.FTN$target ?f) ?c)))) 

o For any class C an element of C is a function f : 1 → C. We can prove the fact that the quasi-topos 
SET (of classes and their functions) is well-pointed – 1 is a generator; that is, that functions are deter-
mined by their effect on their source elements. There is a bijective SET function el2ftnC : C → C1 = 
SET[1, C], from ordinary elements of C to (function) elements of C. 
(2) (CNG$function element) 
    (CNG$signature element SET$class SET$class) 
    (forall (?c (SET$class ?c)) 
        (= (element ?c) (exponent SET.LIM$unit ?c))) 
 
    (forall (?f (SET.FTN$function ?f) ?g (SET.FTN$function ?g)) 
        (=> (and (SET.FTN$parallel-pair [?f ?g]) 
                 (forall (?h ((element (SET.FTN$source ?f)) ?h)) 
                     (= (SET.FTN$composition ?h ?f) (SET.FTN$composition ?h ?g))) 
            (= ?f ?g))) 
 
(3) (CNG$function el2ftn) 
    (CNG$signature el2ftn SET$class SET.FTN$function) 
    (forall (?c (SET$class ?c)) 
        (and (= (SET.FTN$source (el2ftn ?c) ?c) 
             (= (SET.FTN$target (el2ftn ?c) (element ?c)) 
             (forall (?x (?c ?x)) 
                 (= (((el2ftn ?c) ?x) 0) ?x)))) 
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o We can prove the theorem that for any class C the ‘(el2ftn ?c)’ function is bijective. 
    (forall (?c (SET$class ?c)) 
        (SET.FTN$bijection (el2ftn ?c)) 

o Constant functions are sometimes useful. For any two classes A and B, thought of as source and target 
classes respectively, there is a binary CNG function ‘constant’ that maps elements of the target 
(codomain) class B to the associated constant function. The constant functions can also be defined as 
the composition of the ‘(unique ?a)’ function from A to 1 and the ‘(el2ftn ?b)’ function from 1 to 
B. that maps an element ‘(?b ?y)’ to the associated function. 
(4) (CNG$function constant) 
     (CNG$signature constant SET$class SET$class SET.FTN$function) 
     (forall (?a ?b (SET$class ?a) (SET$class ?b)) 
        (and (= (SET.FTN$source (constant ?a ?b)) ?b) 
             (= (SET.FTN$target (constant ?a ?b)) (exponent ?a ?b)))) 
     (forall (?a ?b (SET$class ?a) (SET$class ?b) 
             ?x ?y (?a ?x) (?b ?y)) 
        (= (((constant ?a ?b) ?y) ?x) ?y)) 

o There is a special class 2 = {0 , 1}  called the truth class that contains two elements called truth values, 
where 0 denotes false and 1 denotes true. 
(5) (SET$class truth) 
    (truth 0) 
    (truth 1) 
    (forall (?x (truth ?x)) 
       (or (= ?x 0) (= ?x 1))) 

o There is a special truth element true : 1 → 2 that maps the single element 0 to true (1). 
(6) (SET.FTN$function true) 
    (= (SET.FTN$source true) SET.LIM$unit) 
    (= (SET.FTN$target true) SET.LIM$truth) 
    (= (true 0) 1) 
    (= true ((el2ftn truth) 1)) 

o For any class C there is a character function χC : sub(C) → 2C that maps subobjects to their character-
istic functions.  
(7) (CNG$function character) 
    (CNG$signature character SET$class SET.FTN$function) 
    (forall (?c (SET$class ?c)) 
       (and (= (SET.FTN$source (character ?c)) (subobject ?c)) 
            (= (SET.FTN$target (character ?c)) (exponent ?c truth)))) 
    (forall (?b (SET$class ?b) 
             ?f ((SET$subobject ?b) ?f)) 
        (= ((character ?b) ?f) 
           (the (?u (SET.FTN$function ?u)) 
               (exists (?s (SET.LIM.PBK$opspan ?s)) 
                   (and (= (true (SET.LIM.PBK$opfirst ?s)) 
                        (= (?u (SET.LIM.PBK$opsecond ?s)) 
                        (= (SET.LIM$unique (SET.FTN$source ?f)) 
                           (SET.LIM.PBK$projection1 ?s)) 
                        (= ?f (SET.LIM.PBK$projection2 ?s))))))) 

o The natural numbers ℵ  = {0,  1, …}  is one example of an infinite class. The natural numbers class 
comes equipped with a zero (function) element 0 : 1 → ℵ  and a successor function  σ : ℵ  → ℵ . More-
over, the triple 〈ℵ,  0, σ〉  satisfies the axioms for an initial algebra for the endofunctor 1 + (-) on the 
classes and functions. Note that an algebra 〈S, s0 : 1 → S , s : S → S〉  for the endofunctor 1 + (-) and its 
unique function h : ℵ  → S corresponds to a sequence in the Basic KIF Ontology with the n-th term in 
the sequence given by h(n). 
(8) (SET$class natural-numbers) 
    ((element natural-numbers) zero) 
    ((SET.CLSR$exponent natural-numbers natural-numbers) successor) 
 
    (forall (?c (SET$class ?c) 
             ?x ((element ?c) ?x) 
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             ?f ((SET.FTN$exponent ?c ?c) ?f)) 
        (exists-unique (?h (SET.FTN$function ?h)) 
             (and (= (SET.FTN$source ?h) natural-numbers) 
                  (= (SET.FTN$target ?h) ?c) 
                  (= (SET.FTN$composition zero ?h) ?x) 
                  (= (SET.FTN$composition successor ?h) 
                     (SET.FTN$composition ?h ?f))))) 

o We assume the axiom of extensionality for functions: if a parallel pair of functions has identical com-
position on all elements of the source then the two functions are equal.  
(9) (forall (?f (function ?f) ?g (function ?s)) 
        (=> (and (= (SET.FTN$source ?f) (SET.FTN$source ?g)) 
                 (= (SET.FTN$target ?f) (SET.FTN$target ?g)) 
                 (forall (?x ((element (source ?f)) ?x)) 
                     (= (SET.FTN$composition ?x ?f) 
                        (SET.FTN$composition ?x ?g)))) 
        (= ?f ?g))) 

o We assume the axiom of choice: any epimorphism has a left inverse (in diagrammatic order).  
(10) (forall (?f (epimorphism ?f)) 
         (exists (?g (function ?g)) 
             (= (composition ?g ?f) (identity (target ?f))))) 
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The Namespace of Large Relations 
This namespace will represent large binary relations and their morphisms. More needs to be done here. 
Some of the terms introduced in this namespace are as follows. 

REL ‘relation’ ‘class1’, ‘class2’, ‘extent’ 
‘opposite’ 

‘subrelation’  
‘composition’ 

REL 
.ENDO 

‘endorelation’ ‘class’, ‘extent’, ‘opposite’, ‘identity’  
‘reflexive’, ‘symmetric’, ‘antisymmetric’, 
‘transitive’ 
‘equivalence-relation’, ‘equivalence-class’, 
‘quotient’, ‘canon’, ‘equivalence-closure’ 
‘order-relation’ 

‘subendorelation’ 

Relations 
REL 

A (large) binary relation is a special case of a conglomerate binary relation with 
classes for its two coordinates. A class relation is also known as a SET relation. An 
SET relation is intended to be an abstract semantic notion. Syntactically however, 
every relation is represented as a binary KIF relation. The signature of SET rela-
tions, considered to be CNG relations, is given by their two classes. A SET relation 
with class X1 and class X2 is a triple R = (X1, X2, R), where the class R ⊆  X×Y is the 
underlying extent of the relation.  

For SET relations both (horizontal) composition and identities are defined. Horizontal composition and 
identity make the collections of classes and relations into a quasi-category. There is also the notion of rela-
tion morphism, which makes this into a quasi-double-category. 

o Let ‘relation’ be the SET Namespace term that denotes the Binary Relation collection. A binary rela-
tion is determined by the triple of its class and extent. 
(1) (CNG$conglomerate relation) 
    (forall (?r (relation ?r)) (CNG$relation ?r)) 
 
(2) (CNG$function class1) 
    (CNG$signature class1 relation SET$class) 
 
(3) (CNG$function class2) 
    (CNG$signature class2 relation SET$class) 
 
    (forall (?r (relation ?r)) 
        (CNG$signature ?r (class1 ?r) (class2 ?r))) 
 
(4) (CNG$function extent) 
    (CNG$signature extent relation SET$class) 
    (forall (?r) (relation ?r)) 
        (SET$subclass 
            (extent ?r) 
            (SET.LIM.PRD$binary-product (class1 ?r) (class2 ?r)))) 
 
    (forall (?r (relation ?r) 
             ?x1 ((class1 ?r) ?x1) 
             ?x2 ((class2 ?r) ?x2)) 
         (<=> ((extent ?r) [?x1 ?x2]) 
              (?r ?x1 ?x2))) 
 
    (forall (?r (relation ?r) 
             ?s (relation ?s)) 
        (=> (and (= (class1 ?r) (class1 ?s)) 
                 (= (class2 ?r) (class2 ?s)) 
                 (= (extent ?r) (extent ?s))) 
            (= r s))) 

R ⊆  X1×X2 

Figure 17: Large 
Binary Relation 
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o The is a subrelation relation. This can be used as a restriction for large binary relations. 
(5) (CNG$relation subrelation) 
    (CNG$signature subrelation relation CNG$relation) 
    (forall (?r1 (relation ?r1) ?r2 (CNG$relation ?r2)) 
        (<=> (subrelation ?r1 ?r2) 
             (and (SET$subcollection (class1 ?r1) (CNG$conglomerate1 ?r2)) 
                  (SET$subcollection (class2 ?r1) (CNG$conglomerate2 ?r2)) 
                  (SET$subcollection (extent ?r1) (CNG$extent ?r2))))) 

○ To each relation R, there is an opposite relation Rop. The classes of Rop are the classes of R in reverse 
order, and the extent of Rop is the transpose of the extent of R. The axioms below specify the opposite 
relation. 
(6) (CNG$function opposite) 
    (CNG$signature opposite relation relation) 
    (forall (?r (relation ?r)) 
        (and (= (class1 (opposite ?r)) (class2 ?r)) 
             (= (class2 (opposite ?r)) (class1 ?r)) 
             (forall (?x1 ((class1 ?r) ?x1) 
                      ?x2 ((class2 ?r) ?x2)) 
                 (<=> ((extent (opposite ?r)) [?x2 ?x1]) 
                      ((extent ?r) [?x1 ?x2]))))) 

○ An immediate theorem is that the opposite of the opposite is the original relation. 
(forall (?r (relation ?r)) 
        (= (opposite (opposite ?r)) ?r)) 

o Two relations R and S are composable when the second class of R is the same as the first class of S. 
There is an binary CNG function composition that takes two composable relations and returns their 
composition. 
(7) (CNG$function composition) 
    (CNG$signature composition relation relation relation) 
    (forall (?r (relation ?r) ?s (relation ?s)) 
        (<=> (exists (?t) (= (composition ?r ?s) ?t)) 
             (= (class2 ?r) (class1 ?s))))) 
    (forall (?r (relation ?r) ?s (relation ?s)) 
        (=> (= (class2 ?r) (class1 ?s)) 
            (and (= (class1 (composition ?r ?s)) (class1 ?r)) 
                 (= (class2 (composition ?r ?s)) (class2 ?s))))) 
    (forall (?r (relation ?r) ?s (relation ?s)) 
        (=> (= (class2 ?r) (class1 ?s)) 
            (forall (?x ((class1 ?r) ?x) ?z ((class2 ?s) ?z)) 
                (<=> ((extent (composition ?r ?s)) [?x ?z]) 
                     (exists (?y ((class2 ?r) ?y)) 
                         (and ((extent ?r) [?x ?y]) ((extent ?s) [?y ?z]))))))) 

Endorelations 
REL.ENDO 

o Endorelations are special relations. 
(1) (CNG$conglomerate endorelation) 
    (CNG$subconglomerate endorelation relation) 
 
(2) (CNG$function class) 
    (CNG$signature class endorelation SET$class) 
    (forall (?r) (endorelation ?r)) 
        (and (= (class ?r) (REL$class1 ?r)) 
             (= (class ?r) (REL$class2 ?r)))) 
 
(3) (CNG$function extent) 
    (CNG$signature extent endorelation SET$class) 
    (forall (?r) (endorelation ?r)) 
        (= (extent ?r) (REL$extent ?r))) 

o The is a subendorelation relation. 
(4) (CNG$relation subendorelation) 
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    (CNG$signature subendorelation endorelation endorelation) 
    (forall (?r1 (endorelation ?r1) ?r2 (endorelation ?r2)) 
        (<=> (subendorelation ?r1 ?r2) 
             (REL$subrelation ?r1 ?r2))) 

○ To each endorelation R, there is an opposite endorelation Rop. The class of Rop is the class of R, and the 
extent of Rop is the transpose of the extent of R. The axioms below specify the opposite endorelation. 
(5) (CNG$function opposite) 
    (CNG$signature opposite endorelation endorelation) 
    (forall (?r (endorelation ?r)) 
        (and (= (class (opposite ?r)) (class ?r)) 
             (forall (?x1 ((class ?r) ?x1) 
                      ?x2 ((class ?r) ?x2)) 
                 (<=> ((extent (opposite ?r)) [?x2 ?x1]) 
                      ((extent ?r) [?x1 ?x2]))))) 

○ An immediate theorem is that the opposite of the opposite is the original endorelation. 
(forall (?r (endorelation ?r)) 
        (= (opposite (opposite ?r)) ?r)) 

o For any class A there is an identity endorelation identityA.  
(6) (CNG$function identity) 
    (CNG$signature identity class endorelation) 
    (forall (?c (class ?c)) 
        (= (class (identity ?c)) ?c)) 
    (forall (?c (class ?c) 
             ?x1 (?c ?x1) ?x2 (?c ?x2)) 
        (<=> ((extent (identity ?c)) [?x1 ?x2]) 
             (= ?x1 ?x2))) 

o An endorelation R is reflexive when it contains the identity relation. 
(7) (CNG$conglomerate reflexive) 
    (CNG$subconglomerate reflexive endorelation) 
    (forall (?r (endorelation ?r)) 
        (<=> (reflexive ?r) 
             (forall (?x ((class ?r) ?x)) 
                 ((extent ?r) [?x ?x])))) 

o An endorelation R is symmetric when it contains the opposite relation. 
(8) (CNG$conglomerate symmetric) 
    (CNG$subconglomerate symmetric endorelation) 
    (forall (?r (endorelation ?r)) 
        (<=> (symmetric ?r) 
             (forall (?x1 ((class ?r) ?x1) ?x2 ((class ?r) ?x2)) 
                 (=> ((extent ?r) [?x1 ?x2]) 
                     ((extent ?r) [?x2 ?x1]))))) 

o An endorelation R is antisymmetric when it contains the intersection of the relation with its opposite is 
contained in the identity relation. 
(9) (CNG$conglomerate antisymmetric) 
    (CNG$subconglomerate antisymmetric endorelation) 
    (forall (?r (endorelation ?r)) 
        (<=> (antisymmetric ?r) 
             (forall (?x1 ((class ?r) ?x1) ?x2 ((class ?r) ?x2)) 
                 (=> (and ((extent ?r) [?x1 ?x2]) 
                          ((extent ?r) [?x2 ?x1])) 
                     (= ?x1 ?x2))))) 

o An endorelation R is transitive when it contains the composition with itself. 
(10) (CNG$conglomerate transitive) 
     (CNG$subconglomerate transitive endorelation) 
     (forall (?r (endorelation ?r)) 
         (<=> (transitive ?r) 
              (forall (?x1 ((class ?r) ?x1) 
                       ?x2 ((class ?r) ?x2) 
                       ?x3 ((class ?r) ?x3)) 
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                  (=> (and ((extent ?r) [?x1 ?x2]) 
                           ((extent ?r) [?x2 ?x3])) 
                      ((extent ?r) [?x1 ?x3]))))) 

o An equivalence relation E is a reflexive, symmetric and transitive endorelation. An equivalence rela-
tion determines a quotient class and a canon(ical) surjection. Every endorelation generates an equiva-
lence-relation, the smallest containing it. 
(11) (CNG$conglomerate equivalence-relation) 
     (CNG$subconglomerate equivalence-relation endorelation) 
     (forall (?e (endorelation ?e)) 
         (<=> (equivalence-relation ?e) 
              (and (reflexive ?e) (symmetric ?e) (transitive ?e)))) 
 
(12) (KIF$function equivalence-class) 
     (KIF$signature equivalence-class equivalence-relation CNG$function) 
     (forall (?e (equivalence-relation ?e)) 
         (and (CNG$signature (equivalence-class ?e) (class ?e) SET$class)) 
              (forall (?x1 ((class ?e) ?x)) 
                       ?x2 ((class ?e) ?x2)) 
                  (<=> (((equivalence-class ?e) ?x1) ?x2) 
                       ((extent ?e) [?x1 ?x2]))))) 
 
(13) (CNG$function quotient) 
     (CNG$signature quotient equivalence-relation class) 
     (forall (?e (equivalence-relation ?e) 
              ?c (SET$class ?c)) 
         (<=> ((quotient ?e) ?c) 
              (exists (?x ((class ?e) ?x)) 
                  (= ?c ((equivalence-class ?e) ?x))))) 
 
(14) (CNG$function canon) 
     (CNG$signature canon equivalence-relation SET.FTN$surjection) 
     (forall (?e (equivalence-relation ?e) 
         (and (= (SET.FTN$source (canon ?e)) (class ?e))  
              (= (SET.FTN$target (canon ?e)) (quotient ?e))))  
              (= ((canon ?e) ?x) ((equivalence-class ?e) ?x)))) 
 
(15) (CNG$function equivalence-closure) 
     (CNG$signature equivalence-closure endorelation equivalence-relation) 
     (forall (?r (endorelation ?r)) 
         (= (equivalence-closure ?r) 
            (the (?e (equivalence-relation ?e)) 
                (and (subendorelation ?r ?e) 
                     (forall (?e1 (equivalence-relation ?e1)) 
                         (=> (subendorelation ?r ?e1) 
                             (subendorelation ?e ?e1))))))) 

o An order relation E is a reflexive, antisymmetric and transitive endorelation. 
(16) (CNG$conglomerate order-relation) 
     (CNG$subconglomerate order-relation endorelation) 
     (forall (?r (endorelation ?r)) 
         (<=> (order-relation ?r) 
              (and (reflexive ?r) (antisymmetric ?r) (transitive ?r)))) 
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The Namespace of Large Orders 
This namespace will represent large orders and their monotonic functions. Some of the terms introduced in 
this namespace are the following. This only scratches the surface of this namespace. 

ORD ‘order’ ‘order’, ‘class’, ‘relation’  

Orders 
ORD 

o An order A =  〈A, ≤〉  is a pair consisting of a class A and an order-relation ≤ ⊆  A×A on that class. 
(1) (CNG$conglomerate order) 
 
(2) (CNG$function class) 
    (CNG$signature class order SET$class) 
 
(3) (CNG$function relation) 
    (CNG$signature relation order REL.ENDO$order-relation) 
 
    (forall (?o (order ?o)) 
        (= (REL.ENDO$class (relation ?o)) (class ?o))) 

o For any class A there is an identity order identityA.  
(6) (CNG$function identity) 
    (CNG$signature identity class order) 
    (forall (?c (class ?c)) 
        (and (= (class (identity ?c)) ?c) 
             (= (relation (identity ?c)) (REL$identity ?c)))) 
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The Namespace of Large Graphs 
This is all finished. 

The Namespace of Categories 
This is mostly finished. 

The Namespace of Functors 
This is partly finished. 

The Namespace of Natural Transformations 

The Namespace of Adjunctions 

The Namespace of Large Classifications 

The Namespace of Large Concept Lattices 
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Part II: The Small Aspect 

The Namespace of Small Sets 
This is mostly finished. 

The Namespace of Small Relations 

The Namespace of Small Classifications 
This is all finished. 

The Namespace of Small Spans and Hypergraphs 
A hypergraph is equivalent to a span. The span encoding is finished. The hypergraph equivalent is finished 
in theory, but has not yet been coded. 

The Namespace of Structures (Models) 
A model is a two-dimensional structure with a classification along the instance-type distinction and a hy-
pergraph along the entity-relation distinction The theory is finished, but the code has not been started. 
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